Search results
Results from the WOW.Com Content Network
A course in precalculus may be a prerequisite for Finite Mathematics. Contents of the course include an eclectic selection of topics often applied in social science and business, such as finite probability spaces , matrix multiplication , Markov processes , finite graphs , or mathematical models .
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
4.4 Parametrically Defined Circles and Lines 2 4.5 Implicitly Defined Functions 2 4.6 Conic Sections 3 4.7 Parametrization of Implicitly Defined Functions 2 4.8 Vectors 3 4.9 Vector-Valued Functions 1 4.10 Matrices 2 4.11 The Inverse and Determinant of a Matrix 2 4.12 Linear Transformations and Matrices 1 4.13 Matrices as Functions 3 4.14
Precalculus prepares students for calculus somewhat differently from the way that pre-algebra prepares students for algebra. While pre-algebra often has extensive coverage of basic algebraic concepts, precalculus courses might see only small amounts of calculus concepts, if at all, and often involves covering algebraic topics that might not have been given attention in earlier algebra courses.
For arbitrary stencil points and any derivative of order < up to one less than the number of stencil points, the finite difference coefficients can be obtained by solving the linear equations [6] ( s 1 0 ⋯ s N 0 ⋮ ⋱ ⋮ s 1 N − 1 ⋯ s N N − 1 ) ( a 1 ⋮ a N ) = d !
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, graphs, and statements in logic.
By making a modular multiplicative inverse table for the finite field and doing a lookup. By mapping to a composite field where inversion is simpler, and mapping back. By constructing a special integer (in case of a finite field of a prime order) or a special polynomial (in case of a finite field of a non-prime order) and dividing it by a. [7]