Search results
Results from the WOW.Com Content Network
Conical spiral with an archimedean spiral as floor projection Floor projection: Fermat's spiral Floor projection: logarithmic spiral Floor projection: hyperbolic spiral. In mathematics, a conical spiral, also known as a conical helix, [1] is a space curve on a right circular cone, whose floor projection is a plane spiral.
In cylindrical coordinates, the conchospiral is described by the parametric equations: = = =. The projection of a conchospiral on the (,) plane is a logarithmic spiral.The parameter controls the opening angle of the projected spiral, while the parameter controls the slope of the cone on which the curve lies.
Examples include the plane, the lateral surface of a cylinder or cone, a conical surface with elliptical directrix, the right conoid, the helicoid, and the tangent developable of a smooth curve in space. A ruled surface can be described as the set of points swept by a moving straight line.
The slope of a circular helix is commonly defined as the ratio of the circumference of the circular cylinder that it spirals around, and its pitch (the height of one complete helix turn). A conic helix, also known as a conic spiral, may be defined as a spiral on a conic surface, with the distance to the apex an exponential function of the angle ...
Its name derives from its similarity to the helix: for every point on the helicoid, there is a helix contained in the helicoid which passes through that point. The helicoid is also a ruled surface (and a right conoid), meaning that it is a trace of a line. Alternatively, for any point on the surface, there is a line on the surface passing ...
Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus , Stokes' theorem and the divergence theorem , are frequently given in a parametric form.
Wallis's conical edge is also a kind of right conoid. It is named after the English mathematician John Wallis, who was one of the first to use Cartesian methods to study conic sections. [1] Figure 2. Wallis's Conical Edge with a = 1.01, b = c = 1 Figure 1. Wallis's Conical Edge with a = b = c = 1
A complete Fermat's spiral (both branches) is a smooth double point free curve, in contrast with the Archimedean and hyperbolic spiral. Like a line or circle or parabola, it divides the plane into two connected regions. Definition of sector (light blue) and polar slope angle α