Search results
Results from the WOW.Com Content Network
Elementary kinetic theory and simple empirical models [1] [2] [3] - viscosity for dilute gas with nearly spherical molecules; Power series [2] [3] - simplest approach after dilute gas; Equation of state analogy [3] between PVT and T P; Corresponding state [2] [3] model - scaling a variable with its value at the critical point
A hydrologic model is a simplification of a real-world system (e.g., surface water, soil water, wetland, groundwater, estuary) that aids in understanding, predicting, and managing water resources. Both the flow and quality of water are commonly studied using hydrologic models.
where μ is the electric dipole moment of the effectively polarized water molecule (2.35 D for the SPC/E model), μ 0 is the dipole moment of an isolated water molecule (1.85 D from experiment), and α i is an isotropic polarizability constant, with a value of 1.608 × 10 −40 F·m 2. Since the charges in the model are constant, this ...
The CGS unit is the poise (P, or g·cm −1 ·s −1 = 0.1 Pa·s), [28] named after Jean Léonard Marie Poiseuille. It is commonly expressed, particularly in ASTM standards, as centipoise (cP). The centipoise is convenient because the viscosity of water at 20 °C is about 1 cP, and one centipoise is equal to the SI millipascal second (mPa·s).
The Benedict–Webb–Rubin equation (BWR), named after Manson Benedict, G. B. Webb, and L. C. Rubin, is an equation of state used in fluid dynamics.Working at the research laboratory of the M. W. Kellogg Company, the three researchers rearranged the Beattie–Bridgeman equation of state and increased the number of experimentally determined constants to eight.
It is a common observation that when oil and water are poured into the same container, they separate into two phases or layers, because they are immiscible.In general, aqueous (or water-based) solutions, being polar, are immiscible with non-polar organic solvents (cooking oil, chloroform, toluene, hexane etc.) and form a two-phase system.
Bernoulli's principle states that an increase in the speed of a parcel of fluid occurs simultaneously with a decrease in either the pressure or the height above a datum. [1]: Ch.3 [2]: 156–164, § 3.5 The principle is named after the Swiss mathematician and physicist Daniel Bernoulli, who published it in his book Hydrodynamica in 1738. [3]
By measuring the level of water remaining in the vessel, the time can be measured with uniform graduation. This is an example of outflow clepsydra. Since the water outflow rate is higher when the water level is higher (due to more pressure), the fluid's volume should be more than a simple cylinder when the water level is high.