enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    A simple divide-and-conquer algorithm is more effective asymptotically: given a binary number, it is divided by 10 k, where k is chosen so that the quotient roughly equals the remainder; then each of these pieces is converted to decimal and the two are concatenated.

  3. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    Add these remainders. The remainder of the sum when divided by 7 is the remainder of the given number when divided by 7. For example: The number 194,536 leaves a remainder of 6 on dividing by 7. The number 510,517,813 leaves a remainder of 1 on dividing by 7. Proof of correctness of the method

  4. Digit sum - Wikipedia

    en.wikipedia.org/wiki/Digit_sum

    The concept of a decimal digit sum is closely related to, but not the same as, the digital root, which is the result of repeatedly applying the digit sum operation until the remaining value is only a single digit. The decimal digital root of any non-zero integer will be a number in the range 1 to 9, whereas the digit sum can take any value.

  5. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]

  6. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    Instead of testing for divisibility, test for squarity: for given m and some number k, if k 2 − m is the square of an integer n then k − n divides m. (This is an application of the factorization of a difference of two squares.) For example, 100 2 − 9991 is the square of 3, so consequently 100 − 3 divides 9991.

  7. Casting out nines - Wikipedia

    en.wikipedia.org/wiki/Casting_out_nines

    Casting out nines. Casting out nines is any of three arithmetical procedures: [1] Adding the decimal digits of a positive whole number, while optionally ignoring any 9s or digits which sum to 9 or a multiple of 9. The result of this procedure is a number which is smaller than the original whenever the original has more than one digit, leaves ...

  8. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    The rings for which such a theorem exists are called Euclidean domains, but in this generality, uniqueness of the quotient and remainder is not guaranteed. [8] Polynomial division leads to a result known as the polynomial remainder theorem: If a polynomial f(x) is divided by x − k, the remainder is the constant r = f(k). [9] [10]

  9. Sum of two squares theorem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_squares_theorem

    Its exponent in the decomposition, 2, is even. Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 72 + 492. The prime decomposition of the number 3430 is 2 · 5 · 7 3. This time, the exponent of 7 in the decomposition is 3, an odd number. So 3430 cannot be written as the sum of two squares.