Search results
Results from the WOW.Com Content Network
Random variables are usually written in upper case Roman letters, such as or and so on. Random variables, in this context, usually refer to something in words, such as "the height of a subject" for a continuous variable, or "the number of cars in the school car park" for a discrete variable, or "the colour of the next bicycle" for a categorical variable.
Cohen's kappa measures the agreement between two raters who each classify N items into C mutually exclusive categories. The definition of is =, where p o is the relative observed agreement among raters, and p e is the hypothetical probability of chance agreement, using the observed data to calculate the probabilities of each observer randomly selecting each category.
the thermodynamic beta, equal to (k B T) −1, where k B is the Boltzmann constant and T is the absolute temperature. the second angle in a triangle , opposite the side b the standardized regression coefficient for predictor or independent variables in linear regression (unstandardized regression coefficients are represented with the lower-case ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Download QR code; Print/export Download as PDF ... move to sidebar hide. In statistics, a k-statistic is a minimum-variance unbiased estimator of a cumulant. [1] ...
Historically, upper-case letters were used for representing points in geometry, and lower-case letters were used for variables and constants. Letters are used for representing many other types of mathematical object. As the number of these types has increased, the Greek alphabet and some Hebrew letters have also come to be used.
For a random sample as above, with cumulative distribution (), the order statistics for that sample have cumulative distributions as follows [2] (where r specifies which order statistic): () = = [()] [()] The proof of this formula is pure combinatorics: for the th order statistic to be , the number of samples that are > has to be between and .
Let X be a random variable with a probability distribution P and mean value = [] (i.e. the first raw moment or moment about zero), the operator E denoting the expected value of X. Then the standardized moment of degree k is μ k σ k , {\displaystyle {\frac {\mu _{k}}{\sigma ^{k}}},} [ 2 ] that is, the ratio of the k th moment about the mean