Search results
Results from the WOW.Com Content Network
The superior planets, orbiting outside the Earth's orbit, do not exhibit a full range of phases since their maximum phase angles are smaller than 90°. Mars often appears significantly gibbous, it has a maximum phase angle of 45°. Jupiter has a maximum phase angle of 11.1° and Saturn of 6°, [1] so their phases are almost always full.
Diagram showing the eastern and western quadratures of a superior planet like Mars. In spherical astronomy, quadrature is the configuration of a celestial object in which its elongation is a right angle (90 degrees), i.e., the direction of the object as viewed from Earth is perpendicular to the position of the Sun relative to Earth.
"Inferior planet" refers to Mercury and Venus, which are closer to the Sun than Earth is. "Superior planet" refers to Mars, Jupiter, Saturn, Uranus, and Neptune (the latter two added later), which are further from the Sun than Earth is. The terms are sometimes used more generally; for example, Earth is an inferior planet relative to Mars.
For some objects, such as the Moon (see lunar phases), Venus and Mercury the phase angle (as seen from the Earth) covers the full 0–180° range. The superior planets cover shorter ranges. For example, for Mars the maximum phase angle is about 45°. For Jupiter, the maximum is 11.1° and for Saturn 6°. [1]
The greatest elongation of a given inferior planet occurs when this planet's position, in its orbital path around the Sun, is at tangent to the observer on Earth. Since an inferior planet is well within the area of Earth's orbit around the Sun, observation of its elongation should not pose that much a challenge (compared to deep-sky objects, for example).
The apparent brightness of Mercury as seen from Earth is greatest at phase angle 0° (superior conjunction with the Sun) when it can reach magnitude −2.6. [14] At phase angles approaching 180° (inferior conjunction) the planet fades to about magnitude +5 [14] with the exact brightness depending on the phase angle at that particular ...
The current Venusian atmosphere has only ~200 mg/kg H 2 O(g) in its atmosphere and the pressure and temperature regime makes water unstable on its surface. Nevertheless, assuming that early Venus's H 2 O had a ratio between deuterium (heavy hydrogen, 2H) and hydrogen (1H) similar to Earth's Vienna Standard Mean Ocean Water of 1.6×10 −4, [7] the current D/H ratio in the Venusian atmosphere ...
Jupiter – fifth planet from the Sun and the largest in the Solar System. It is a giant planet with a mass one-thousandth that of the Sun, but two and a half times that of all the other planets in the Solar System combined. Jupiter is a gas giant, along with Saturn, with the other two giant planets, Uranus and Neptune, being ice giants.