enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Biasvariance_tradeoff

    The bias–variance decomposition forms the conceptual basis for regression regularization methods such as LASSO and ridge regression.Regularization methods introduce bias into the regression solution that can reduce variance considerably relative to the ordinary least squares (OLS) solution.

  3. Mean squared prediction error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_prediction_error

    The MSPE can be decomposed into two terms: the squared bias (mean error) of the fitted values and the variance of the fitted values: = +, = ⁡ [^ ...

  4. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator.

  5. Variance decomposition of forecast errors - Wikipedia

    en.wikipedia.org/wiki/Variance_decomposition_of...

    =, where is a lower triangular matrix obtained by a Cholesky decomposition of such that = ′, where is the covariance matrix of the errors Φ i = J A i J ′ , {\displaystyle \Phi _{i}=JA^{i}J',} where J = [ I k 0 … 0 ] , {\displaystyle J={\begin{bmatrix}\mathbf {I} _{k}&0&\dots &0\end{bmatrix}},} so that J {\displaystyle J} is a k ...

  6. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    An advantage of variance as a measure of dispersion is that it is more amenable to algebraic manipulation than other measures of dispersion such as the expected absolute deviation; for example, the variance of a sum of uncorrelated random variables is equal to the sum of their variances. A disadvantage of the variance for practical applications ...

  7. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    The MSE is the second moment (about the origin) of the error, and thus incorporates both the variance of the estimator (how widely spread the estimates are from one data sample to another) and its bias (how far off the average estimated value is from the true value). [citation needed] For an unbiased estimator, the MSE is the variance of the ...

  8. Law of total variance - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_variance

    For an illustration, consider the example of a dog show (a selected excerpt of Analysis_of_variance#Example). Let the random variable correspond to the dog weight and correspond to the breed. In this situation, it is reasonable to expect that the breed explains a major portion of the variance in weight since there is a big variance in the ...

  9. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    Bias in standard deviation for autocorrelated data. The figure shows the ratio of the estimated standard deviation to its known value (which can be calculated analytically for this digital filter), for several settings of α as a function of sample size n. Changing α alters the variance reduction ratio of the filter, which is known to be