Search results
Results from the WOW.Com Content Network
In computer science, a type punning is any programming technique that subverts or circumvents the type system of a programming language in order to achieve an effect that would be difficult or impossible to achieve within the bounds of the formal language. In C and C++, constructs such as pointer type conversion and union — C++ adds reference ...
String representation Object copy Value equality Object comparison Hash code Object ID Human-readable Source-compatible ABAP Objects — APL (Dyalog) ⍕x ⎕SRC x ⎕NS x: x = y — C++ x == y [52] pointer to object can be converted into an integer ID: C# x.ToString() x.Clone() x.Equals(y) x.CompareTo(y) x.GetHashCode()
COBOL uses the STRING statement to concatenate string variables. MATLAB and Octave use the syntax "[x y]" to concatenate x and y. Visual Basic and Visual Basic .NET can also use the "+" sign but at the risk of ambiguity if a string representing a number and a number are together. Microsoft Excel allows both "&" and the function "=CONCATENATE(X,Y)".
String functions are used in computer programming languages to manipulate a string or query information about a string (some do both). Most programming languages that have a string datatype will have some string functions although there may be other low-level ways within each language to handle strings directly. In object-oriented languages ...
Specifically, C allows a void* pointer to be assigned to any pointer type without a cast, while C++ does not; this idiom appears often in C code using malloc memory allocation, [9] or in the passing of context pointers to the POSIX pthreads API, and other frameworks involving callbacks. For example, the following is valid in C but not C++:
Most C code can easily be made to compile correctly in C++ but there are a few differences that cause some valid C code to be invalid or behave differently in C++. For example, C allows implicit conversion from void * to other pointer types but C++ does not (for type safety reasons).
a string type, corresponding to C's char * (G_TYPE_STRING); an opaque pointer type, corresponding to C's void * (G_TYPE_POINTER). The classed built-in fundamental types are: a base class type for instances of GObject, the root of the standard class inheritance tree (G_TYPE_OBJECT)
A basic example is in the argv argument to the main function in C (and C++), which is given in the prototype as char **argv—this is because the variable argv itself is a pointer to an array of strings (an array of arrays), so *argv is a pointer to the 0th string (by convention the name of the program), and **argv is the 0th character of the ...