enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exothermic reaction - Wikipedia

    en.wikipedia.org/wiki/Exothermic_reaction

    An energy profile of an exothermic reaction. In an exothermic reaction, by definition, the enthalpy change has a negative value: ΔH = H products - H reactants < 0. where a larger value (the higher energy of the reactants) is subtracted from a smaller value (the lower energy of the products). For example, when hydrogen burns: 2H 2 (g) + O 2 (g ...

  3. Exothermic process - Wikipedia

    en.wikipedia.org/wiki/Exothermic_process

    According to the IUPAC, an exothermic reaction is "a reaction for which the overall standard enthalpy change ΔH⚬ is negative". [4] Some examples of exothermic process are fuel combustion, condensation and nuclear fission, [5] which is used in nuclear power plants to release large amounts of energy. [6]

  4. Exergonic reaction - Wikipedia

    en.wikipedia.org/wiki/Exergonic_reaction

    The change of Gibbs free energy (ΔG) in an exergonic reaction (that takes place at constant pressure and temperature) is negative because energy is lost (2). In chemical thermodynamics, an exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy). [1]

  5. Thermochemistry - Wikipedia

    en.wikipedia.org/wiki/Thermochemistry

    Endothermic reactions absorb heat, while exothermic reactions release heat. Thermochemistry coalesces the concepts of thermodynamics with the concept of energy in the form of chemical bonds. The subject commonly includes calculations of such quantities as heat capacity, heat of combustion, heat of formation, enthalpy, entropy, and free energy.

  6. Exergonic process - Wikipedia

    en.wikipedia.org/wiki/Exergonic_process

    An exergonic process is one which there is a positive flow of energy from the system to the surroundings. This is in contrast with an endergonic process. [ 1 ] Constant pressure, constant temperature reactions are exergonic if and only if the Gibbs free energy change is negative (∆ G < 0).

  7. Endothermic process - Wikipedia

    en.wikipedia.org/wiki/Endothermic_process

    Whether a process can occur spontaneously depends not only on the enthalpy change but also on the entropy change (∆S) and absolute temperature T.If a process is a spontaneous process at a certain temperature, the products have a lower Gibbs free energy G = H – TS than the reactants (an exergonic process), [2] even if the enthalpy of the products is higher.

  8. Thermochemical equation - Wikipedia

    en.wikipedia.org/wiki/Thermochemical_equation

    Hess's law states that the sum of the energy changes of all thermochemical equations included in an overall reaction is equal to the overall energy change. Since Δ H {\displaystyle \Delta H} is a state function and is not dependent on how reactants become products as a result, steps (in the form of several thermochemical equations) can be used ...

  9. Spontaneous process - Wikipedia

    en.wikipedia.org/wiki/Spontaneous_process

    In thermodynamics, a spontaneous process is a process which occurs without any external input to the system. A more technical definition is the time-evolution of a system in which it releases free energy and it moves to a lower, more thermodynamically stable energy state (closer to thermodynamic equilibrium).