enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matplotlib - Wikipedia

    en.wikipedia.org/wiki/Matplotlib

    Matplotlib (portmanteau of MATLAB, plot, and library [3]) is a plotting library for the Python programming language and its numerical mathematics extension NumPy.It provides an object-oriented API for embedding plots into applications using general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK.

  3. Histogram - Wikipedia

    en.wikipedia.org/wiki/Histogram

    The total area of a histogram used for probability density is always normalized to 1. If the length of the intervals on the x-axis are all 1, then a histogram is identical to a relative frequency plot. Histograms are sometimes confused with bar charts. In a histogram, each bin is for a different range of values, so altogether the histogram ...

  4. Normalization (image processing) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(image...

    In image processing, normalization is a process that changes the range of pixel intensity values. Applications include photographs with poor contrast due to glare, for example.

  5. Local binary patterns - Wikipedia

    en.wikipedia.org/wiki/Local_binary_patterns

    Compute the histogram, over the cell, of the frequency of each "number" occurring (i.e., each combination of which pixels are smaller and which are greater than the center). This histogram can be seen as a 256-dimensional feature vector. Optionally normalize the histogram. Concatenate (normalized) histograms of all cells.

  6. Histogram matching - Wikipedia

    en.wikipedia.org/wiki/Histogram_matching

    An example of histogram matching. In image processing, histogram matching or histogram specification is the transformation of an image so that its histogram matches a specified histogram. [1] The well-known histogram equalization method is a special case in which the specified histogram is uniformly distributed. [2]

  7. Histogram equalization - Wikipedia

    en.wikipedia.org/wiki/Histogram_equalization

    Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images. There are two ways to think about and implement histogram equalization, either as image change or as palette change.

  8. Histogram of oriented gradients - Wikipedia

    en.wikipedia.org/wiki/Histogram_of_oriented...

    The HOG descriptor is then the concatenated vector of the components of the normalized cell histograms from all of the block regions. These blocks typically overlap, meaning that each cell contributes more than once to the final descriptor. Two main block geometries exist: rectangular R-HOG blocks and circular C-HOG blocks.

  9. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The Lagrange constraints that () is properly normalized and has the specified mean and variance are satisfied if and only if , , and are chosen so that = (). The entropy of a normal distribution X ∼ N ( μ , σ 2 ) {\textstyle X\sim N(\mu ,\sigma ^{2})} is equal to H ( X ) = 1 2 ( 1 + ln ⁡ 2 σ 2 π ) , {\displaystyle H(X)={\tfrac {1}{2}}(1 ...