Search results
Results from the WOW.Com Content Network
ACT made high-sensitivity, arcminute resolution, microwave-wavelength surveys of the sky in order to study the cosmic microwave background radiation (CMB), the relic radiation left by the Big Bang process. Located 40 km from San Pedro de Atacama, at an altitude of 5,190 metres (17,030 ft), it was one of the highest ground-based telescopes in ...
The Sunyaev–Zel'dovich effect shows the phenomena of radiant cosmic background radiation interacting with "electron" clouds distorting the spectrum of the radiation. There is also background radiation in the infrared, x-rays, etc., with different causes, and they can sometimes be resolved into an individual source. See cosmic infrared ...
CMB spectral distortions are tiny departures of the average cosmic microwave background (CMB) frequency spectrum from the predictions given by a perfect black body.They can be produced by a number of standard and non-standard processes occurring at the early stages of cosmic history, and therefore allow us to probe the standard picture of cosmology.
The European Space Agency's Planck satellite has been gathering data since its launch in 2009, slowly building up a map of the cosmic microwave background radiation -- a distant remnant of the Big ...
The discovery of cosmic microwave background radiation constitutes a major development in modern physical cosmology. In 1964, US physicist Arno Allan Penzias and radio-astronomer Robert Woodrow Wilson discovered the cosmic microwave background (CMB) , estimating its temperature as 3.5 K, as they experimented with the Holmdel Horn Antenna .
The Cosmic Background Explorer (COBE / ˈ k oʊ b i / KOH-bee), also referred to as Explorer 66, was a NASA satellite dedicated to cosmology, which operated from 1989 to 1993.Its goals were to investigate the cosmic microwave background radiation (CMB or CMBR) of the universe and provide measurements that would help shape the understanding of the cosmos.
The interpretation of the cosmic microwave background was a controversial issue in the late 1960s. Alternative explanations included energy from within the solar system, from galaxies, from intergalactic plasma and from multiple extragalactic radio sources. Two requirements would show that the microwave radiation was truly "cosmic".
The experiment uses bolometers [3] for radiation detection. These bolometers are kept at a temperature of 0.27 kelvin.At this temperature the material has a very low heat capacity according to the Debye law, thus incoming microwave light will cause a large temperature change, proportional to the intensity of the incoming waves, which is measured with sensitive thermometers.