enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    The bucket elimination algorithm can be adapted for constraint optimization. A given variable can be indeed removed from the problem by replacing all soft constraints containing it with a new soft constraint. The cost of this new constraint is computed assuming a maximal value for every value of the removed variable.

  3. Active-set method - Wikipedia

    en.wikipedia.org/wiki/Active-set_method

    In mathematical optimization, the active-set method is an algorithm used to identify the active constraints in a set of inequality constraints. The active constraints are then expressed as equality constraints, thereby transforming an inequality-constrained problem into a simpler equality-constrained subproblem.

  4. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    Optimal control is the use of mathematical optimization to obtain a policy that is constrained by differential (=), equality (() =), or inequality (()) equations and minimizes an objective/reward function (()). The basic optimal control is solved with GEKKO by integrating the objective and transcribing the differential equation into algebraic ...

  5. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    g i (x) ≤ 0 are called inequality constraints; h j (x) = 0 are called equality constraints, and; m ≥ 0 and p ≥ 0. If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization problem.

  6. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    The system of equations and inequalities corresponding to the KKT conditions is usually not solved directly, except in the few special cases where a closed-form solution can be derived analytically. In general, many optimization algorithms can be interpreted as methods for numerically solving the KKT system of equations and inequalities. [7]

  7. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    with v the Lagrange multipliers on the non-negativity constraints, λ the multipliers on the inequality constraints, and s the slack variables for the inequality constraints. The fourth condition derives from the complementarity of each group of variables ( x , s ) with its set of KKT vectors (optimal Lagrange multipliers) being ( v , λ ) .

  8. Ellipsoid method - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid_method

    Then we proceed to the next inequality constraint. For each constraint, we either convert it to equality or remove it. Finally, we have only equality constraints, which can be solved by any method for solving a system of linear equations. Step 3: the decision problem can be reduced to a different optimization problem.

  9. List of optimization software - Wikipedia

    en.wikipedia.org/wiki/List_of_optimization_software

    The use of optimization software requires that the function f is defined in a suitable programming language and connected at compilation or run time to the optimization software. The optimization software will deliver input values in A , the software module realizing f will deliver the computed value f ( x ) and, in some cases, additional ...