Search results
Results from the WOW.Com Content Network
In computer science, quickselect is a selection algorithm to find the kth smallest element in an unordered list, also known as the kth order statistic.Like the related quicksort sorting algorithm, it was developed by Tony Hoare, and thus is also known as Hoare's selection algorithm. [1]
In computer science, the median of medians is an approximate median selection algorithm, frequently used to supply a good pivot for an exact selection algorithm, most commonly quickselect, that selects the kth smallest element of an initially unsorted array. Median of medians finds an approximate median in linear time.
Range minimum query reduced to the lowest common ancestor problem.. Given an array A[1 … n] of n objects taken from a totally ordered set, such as integers, the range minimum query RMQ A (l,r) =arg min A[k] (with 1 ≤ l ≤ k ≤ r ≤ n) returns the position of the minimal element in the specified sub-array A[l …
Python's standard library includes heapq.nsmallest and heapq.nlargest functions for returning the smallest or largest elements from a collection, in sorted order. The implementation maintains a binary heap , limited to holding k {\displaystyle k} elements, and initialized to the first k {\displaystyle k} elements in the collection.
A further relaxation requiring only a list of the k smallest elements, but without requiring that these be ordered, makes the problem equivalent to partition-based selection; the original partial sorting problem can be solved by such a selection algorithm to obtain an array where the first k elements are the k smallest, and sorting these, at a total cost of O(n + k log k) operations.
To test whether an element is in the set, feed it to each of the k hash functions to get k array positions. If any of the bits at these positions is 0, the element is definitely not in the set; if it were, then all the bits would have been set to 1 when it was inserted.
In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. K-dimensional is that which concerns exactly k orthogonal axes or a space of any number of dimensions. [1] k-d trees are a useful data structure for several applications, such as:
There are three ways in which the elements of an array can be indexed: 0 (zero-based indexing) The first element of the array is indexed by subscript of 0. [8] 1 (one-based indexing) The first element of the array is indexed by subscript of 1. n (n-based indexing) The base index of an array can be freely chosen.