Search results
Results from the WOW.Com Content Network
A relativistic jet emitted from galaxy M87, as seen by the Hubble Space Telescope. A jet is a stream of fluid that is projected into a surrounding medium, usually from some kind of a nozzle, aperture or orifice. [1] Jets can travel long distances [quantify] without dissipating. Jet fluid has higher speed compared to the surrounding fluid medium.
A free jet of air entrains molecules of air from its immediate surroundings causing an axisymmetrical "tube" or "sleeve" of low pressure around the jet (see Diagram 1). The resultant forces from this low pressure tube end up balancing any perpendicular flow instability, which stabilises the jet in a straight line.
The coefficient of contraction is defined as the ratio between the area of the jet at the vena contracta and the area of the orifice. C c = Area at vena contracta/Area of orifice. The typical value may be taken as 0.611 for a sharp orifice (concentric with the flow channel). [2] [3] The smaller the value, the greater the effect the vena ...
In fluid dynamics, a synthetic jet flow—is a type of jet flow, which is made up of the surrounding fluid. [1] Synthetic jets are produced by periodic ejection and suction of fluid from an opening. This oscillatory motion may be driven by a piston or diaphragm inside a cavity among other ways.
Torricelli's law describes the parting speed of a jet of water, based on the distance below the surface at which the jet starts, assuming no air resistance, viscosity, or other hindrance to the fluid flow. This diagram shows several such jets, vertically aligned, leaving the reservoir horizontally.
In power generation, this phenomenon is used in steam jet air ejectors to maintain condenser vacuum by removing non-condensible gases from the condenser. In theorical aerodynamics applications the entrainment velocity , which expresses the rate of change of the entrainment, is often used to solve the von Kármán integral for turbulent boundary ...
In fluid dynamics, Bickley jet is a steady two-dimensional laminar plane jet with large jet Reynolds number emerging into the fluid at rest, named after W. G. Bickley, who gave the analytical solution in 1937, [1] to the problem derived by Schlichting in 1933 [2] and the corresponding problem in axisymmetric coordinates is called as Schlichting jet.
The strength of the vacuum produced depends on the velocity and shape of the fluid jet and the shape of the constriction and mixing sections, but if a liquid is used as the working fluid, the strength of the vacuum produced is limited by the vapor pressure of the liquid (for water, 3.2 kPa or 0.46 psi or 32 mbar at 25 °C or 77 °F). If a gas ...