Search results
Results from the WOW.Com Content Network
The system power consumption is a sum of the power ratings for all of the components of the computer system that draw on the power supply. Some graphics cards (especially multiple cards) and large groups of hard drives can place very heavy demands on the 12 V lines of the PSU, and for these loads, the PSU's 12 V rating is crucial.
The power measurement is often the average power used while running the benchmark, but other measures of power usage may be employed (e.g. peak power, idle power). For example, the early UNIVAC I computer performed approximately 0.015 operations per watt-second (performing 1,905 operations per second (OPS), while consuming 125 kW).
The largest power consuming subsystems in computer servers are the processor, memory and disk. Servers also have idle energy consumption which sometimes can be large, but it is static and it can be measured. Power models are presented for each of subsystems CPU, memory and disk in reference [18] in detail. This power model is the core technique ...
Processor manufacturers usually release two power consumption numbers for a CPU: typical thermal power, which is measured under normal load (for instance, AMD's average CPU power) maximum thermal power, which is measured under a worst-case load; For example, the Pentium 4 2.8 GHz has a 68.4 W typical thermal power and 85 W maximum thermal power.
Consider a computer power supply, where the input is 5 V, the output is 3.3 V, and the load current is 10 A. In this case, the duty cycle will be 66% and the diode would be on for 34% of the time. In this case, the duty cycle will be 66% and the diode would be on for 34% of the time.
In computing, computer performance is the amount of useful work accomplished by a computer system. Outside of specific contexts, computer performance is estimated in terms of accuracy, efficiency and speed of executing computer program instructions. When it comes to high computer performance, one or more of the following factors might be involved:
It refers to splitting the core voltage supply from the I/O voltage. A VRT processor has a 3.3 V I/O and 2.9 V core voltage, to save power compared to a typical Pentium processor with both I/O and core voltage at 3.3V. All Pentium MMX and later processors adopted this so-called split rail power supply.
In computer architecture, dynamic voltage scaling is a power management technique in which the voltage used in a component is increased or decreased, depending upon circumstances. Dynamic voltage scaling to increase voltage is known as overvolting ; dynamic voltage scaling to decrease voltage is known as undervolting .