enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic except at zero and the negative integers, where it has simple poles. The gamma function has no zeros, so the reciprocal gamma function ⁠ 1 / Γ(z) ⁠ is an entire function.

  3. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  4. Ordinal arithmetic - Wikipedia

    en.wikipedia.org/wiki/Ordinal_arithmetic

    In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation.Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion.

  5. Particular values of the gamma function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    It is unknown whether these constants are transcendental in general, but Γ(⁠ 1 / 3 ⁠) and Γ(⁠ 1 / 4 ⁠) were shown to be transcendental by G. V. Chudnovsky. Γ(⁠ 1 / 4 ⁠) / 4 √ π has also long been known to be transcendental, and Yuri Nesterenko proved in 1996 that Γ(⁠ 1 / 4 ⁠), π, and e π are algebraically independent.

  6. Exponential sum - Wikipedia

    en.wikipedia.org/wiki/Exponential_sum

    The sum of exponentials is a useful model in pharmacokinetics (chemical kinetics in general) for describing the concentration of a substance over time. The exponential terms correspond to first-order reactions, which in pharmacology corresponds to the number of modelled diffusion compartments. [2] [3]

  7. Gamma distribution - Wikipedia

    en.wikipedia.org/wiki/Gamma_distribution

    Suppose we wish to generate random variables from Gamma(n + δ, 1), where n is a non-negative integer and 0 < δ < 1. Using the fact that a Gamma(1, 1) distribution is the same as an Exp(1) distribution, and noting the method of generating exponential variables, we conclude that if U is uniformly distributed on (0, 1], then −ln U is ...

  8. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. The exponential of a variable ⁠ x {\displaystyle x} ⁠ is denoted ⁠ exp ⁡ x {\displaystyle \exp x} ⁠ or ⁠ e x {\displaystyle e^{x}} ⁠ , with the two notations used interchangeably.

  9. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    A fan of order n is defined to be a graph on the vertices {0, 1, ..., n} with 2n − 1 edges connected according to the following rules: Vertex 0 is connected by a single edge to each of the other n vertices, and vertex is connected by a single edge to the next vertex k + 1 for all 1 ≤ k < n. [24]