Search results
Results from the WOW.Com Content Network
The internal energy depends only on the internal state of the system and not on the particular choice from many possible processes by which energy may pass into or out of the system. It is a state variable, a thermodynamic potential, and an extensive property. [5] Thermodynamics defines internal energy macroscopically, for the body as a whole.
Just as a small increment of energy in a mechanical system is the product of a force times a small displacement, so an increment in the energy of a thermodynamic system can be expressed as the sum of the products of certain generalized "forces" which, when unbalanced, cause certain generalized "displacements" to occur, with their product being the energy transferred as a result.
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
Since the internal energy of the gas during Joule expansion is constant, cooling must be due to the conversion of internal kinetic energy to internal potential energy, with the opposite being the case for warming. Intermolecular forces are repulsive at short range and attractive at long range (for example, see the Lennard-Jones potential ...
The Sackur–Tetrode equation is an expression for the entropy of a monatomic ideal gas. [1]It is named for Hugo Martin Tetrode [2] (1895–1931) and Otto Sackur [3] (1880–1914), who developed it independently as a solution of Boltzmann's gas statistics and entropy equations, at about the same time in 1912.
If the calorically perfect gas approximation is used, then the ideal gas law may also be expressed as follows = where is the number density of the gas (number of atoms/molecules per unit volume), = / is the (constant) adiabatic index (ratio of specific heats), = is the internal energy per unit mass (the "specific internal energy"), is the ...
The first derivatives of the internal energy with respect to its (extensive) natural variables S and V yields the intensive parameters of the system - The pressure P and the temperature T . For a simple system in which the particle numbers are constant, the second derivatives of the thermodynamic potentials can all be expressed in terms of only ...
Just as with the internal energy version of the fundamental equation, the chain rule can be used on the above equations to find k+2 equations of state with respect to the particular potential. If Φ is a thermodynamic potential, then the fundamental equation may be expressed as: