Search results
Results from the WOW.Com Content Network
In classical logic, disjunctive syllogism [1] [2] (historically known as modus tollendo ponens (MTP), [3] Latin for "mode that affirms by denying") [4] is a valid argument form which is a syllogism having a disjunctive statement for one of its premises. [5] [6] An example in English: I will choose soup or I will choose salad. I will not choose ...
Modus ponens is a mixed hypothetical syllogism and is closely related to another valid form of argument, modus tollens. Both have apparently similar but invalid forms: affirming the consequent and denying the antecedent. Constructive dilemma is the disjunctive version of modus ponens. The history of modus ponens goes back to antiquity. [4]
Disjunctive syllogism (sometimes abbreviated DS) has one of the same characteristics as modus tollens in that it contains a premise, then in a second premise it denies a statement, leading to the conclusion. In Disjunctive Syllogism, the first premise establishes two options.
Theorems are those logical formulas where is the conclusion of a valid proof, [4] while the equivalent semantic consequence indicates a tautology.. The tautology rule may be expressed as a sequent:
In the 19th century, modifications to syllogism were incorporated to deal with disjunctive ("A or B") and conditional ("if A then B") statements. Immanuel Kant famously claimed, in Logic (1800), that logic was the one completed science, and that Aristotelian logic more or less included everything about logic that there was to know.
Disjunctive / hypothetical syllogism; ... i.e. rules such that there is an effective procedure for determining whether any given formula is the conclusion of a given ...
The form of a modus tollens argument is a mixed hypothetical syllogism, with two premises and a conclusion: . If P, then Q. Not Q. Therefore, not P.. The first premise is a conditional ("if-then") claim, such as P implies Q.
Constructive dilemma [1] [2] [3] is a valid rule of inference of propositional logic.It is the inference that, if P implies Q and R implies S and either P or R is true, then either Q or S has to be true.