enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bacterial growth - Wikipedia

    en.wikipedia.org/wiki/Bacterial_growth

    The slope of this line is the specific growth rate of the organism, which is a measure of the number of divisions per cell per unit time. [5] The actual rate of this growth (i.e. the slope of the line in the figure) depends upon the growth conditions, which affect the frequency of cell division events and the probability of both daughter cells ...

  3. Monod equation - Wikipedia

    en.wikipedia.org/wiki/Monod_equation

    μ is the growth rate of a considered microorganism, μ max is the maximum growth rate of this microorganism, [S] is the concentration of the limiting substrate S for growth, K s is the "half-velocity constant"—the value of [S] when μ/μ max = 0.5. μ max and K s are empirical (experimental) coefficients to the Monod equation. They will ...

  4. Microevolution - Wikipedia

    en.wikipedia.org/wiki/Microevolution

    Macroevolution is guided by sorting of interspecific variation ("species selection" [2]), as opposed to sorting of intraspecific variation in microevolution. [3] Species selection may occur as (a) effect-macroevolution, where organism-level traits (aggregate traits) affect speciation and extinction rates, and (b) strict-sense species selection, where species-level traits (e.g. geographical ...

  5. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    As resources become more limited, the growth rate tapers off, and eventually, once growth rates are at the carrying capacity of the environment, the population size will taper off. [6] This S-shaped curve observed in logistic growth is a more accurate model than exponential growth for observing real-life population growth of organisms. [8]

  6. Growth curve (biology) - Wikipedia

    en.wikipedia.org/wiki/Growth_curve_(biology)

    Figure 1: A bi-phasic bacterial growth curve.. A growth curve is an empirical model of the evolution of a quantity over time. Growth curves are widely used in biology for quantities such as population size or biomass (in population ecology and demography, for population growth analysis), individual body height or biomass (in physiology, for growth analysis of individuals).

  7. Gompertz function - Wikipedia

    en.wikipedia.org/wiki/Gompertz_function

    Moreover, the function makes use of initial growth rate, which is commonly seen in populations of bacterial and cancer cells, which undergo the log phase and grow rapidly in numbers. Despite its popularity, the function initial rate of tumor growth is difficult to predetermine given the varying microcosms present with a patient, or varying ...

  8. Evolution of bacteria - Wikipedia

    en.wikipedia.org/wiki/Evolution_of_bacteria

    The evolution of bacteria has progressed over billions of years since the Precambrian time with their first major divergence from the archaeal/eukaryotic lineage roughly 3.2-3.5 billion years ago. [1] [2] This was discovered through gene sequencing of bacterial nucleoids to reconstruct their phylogeny.

  9. Luria–Delbrück experiment - Wikipedia

    en.wikipedia.org/wiki/Luria–Delbrück_experiment

    Luria and Delbrück [5] estimated the mutation rate (mutations per bacterium per unit time) from the equation = ⁡ [⁡ ()] where β is the cellular growth rate, n 0 is the initial number of bacteria in each culture, t is the time, and