Search results
Results from the WOW.Com Content Network
Backpropagation computes the gradient of a loss function with respect to the weights of the network for a single input–output example, and does so efficiently, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this can be derived through ...
Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output Unfold the network to contain k instances of f do until stopping criterion is met: x := the zero-magnitude vector // x is the current context for t from 0 to n − k do // t is time. n is the length of the training sequence Set the network inputs to x, a[t ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Neural backpropagation is the phenomenon in which, after the action potential of a neuron creates a voltage spike down the axon (normal propagation), another impulse is generated from the soma and propagates towards the apical portions of the dendritic arbor or dendrites (from which much of the original input current originated).
Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [1]
This technique is used in stochastic gradient descent and as an extension to the backpropagation algorithms used to train artificial neural networks. [29] [30] In the direction of updating, stochastic gradient descent adds a stochastic property. The weights can be used to calculate the derivatives.
In machine learning, the vanishing gradient problem is the problem of greatly diverging gradient magnitudes between earlier and later layers encountered when training neural networks with backpropagation. In such methods, neural network weights are updated proportional to their partial derivative of the loss function. [1]
Backpropagation was first described in 1986, with stochastic gradient descent being used to efficiently optimize parameters across neural networks with multiple hidden layers. Soon after, another improvement was developed: mini-batch gradient descent, where small batches of data are substituted for single samples.