enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    Given: Ellipsoid ⁠ x 2 / a 2 ⁠ + ⁠ y 2 / b 2 ⁠ + ⁠ z 2 / c 2 ⁠ = 1 and the plane with equation n x x + n y y + n z z = d, which have an ellipse in common. Wanted: Three vectors f 0 (center) and f 1 , f 2 (conjugate vectors), such that the ellipse can be represented by the parametric equation

  3. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities

  4. Flattening - Wikipedia

    en.wikipedia.org/wiki/Flattening

    Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution respectively. Other terms used are ellipticity , or oblateness . The usual notation for flattening is f {\displaystyle f} and its definition in terms of the semi-axes a {\displaystyle a} and b {\displaystyle b} of ...

  5. Perimeter of an ellipse - Wikipedia

    en.wikipedia.org/wiki/Perimeter_of_an_ellipse

    An ellipse has two axes and two foci Unlike most other elementary shapes, such as the circle and square , there is no algebraic equation to determine the perimeter of an ellipse . Throughout history, a large number of equations for approximations and estimates have been made for the perimeter of an ellipse.

  6. Angular eccentricity - Wikipedia

    en.wikipedia.org/wiki/Angular_eccentricity

    Angular eccentricity is one of many parameters which arise in the study of the ellipse or ellipsoid. It is denoted here by α (alpha). It is denoted here by α (alpha). It may be defined in terms of the eccentricity , e , or the aspect ratio, b/a (the ratio of the semi-minor axis and the semi-major axis ):

  7. Ellipsoidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Ellipsoidal_coordinates

    An alternative parametrization exists that closely follows the angular parametrization of spherical coordinates: [1] = ⁡ ⁡, = ⁡ ⁡, = ⁡. Here, > parametrizes the concentric ellipsoids around the origin and [,] and [,] are the usual polar and azimuthal angles of spherical coordinates, respectively.

  8. Elliptic coordinate system - Wikipedia

    en.wikipedia.org/wiki/Elliptic_coordinate_system

    The classic applications of elliptic coordinates are in solving partial differential equations, e.g., Laplace's equation or the Helmholtz equation, for which elliptic coordinates are a natural description of a system thus allowing a separation of variables in the partial differential equations. Some traditional examples are solving systems such ...

  9. Superellipsoid - Wikipedia

    en.wikipedia.org/wiki/Superellipsoid

    Superellipsoid collection with exponent parameters, created using POV-Ray.Here, e = 2/r, and n = 2/t (equivalently, r = 2/e and t = 2/n). [1]In mathematics, a superellipsoid (or super-ellipsoid) is a solid whose horizontal sections are superellipses (Lamé curves) with the same squareness parameter , and whose vertical sections through the center are superellipses with the squareness parameter .