Search results
Results from the WOW.Com Content Network
Output of a computer model of underwater acoustic propagation in a simplified ocean environment. A seafloor map produced by multibeam sonar. Underwater acoustics (also known as hydroacoustics) is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries.
Up to 99.63 °C (the boiling point of water at 0.1 MPa), at this pressure water exists as a liquid. Above that, it exists as water vapor. Note that the boiling point of 100.0 °C is at a pressure of 0.101325 MPa (1 atm), which is the average atmospheric pressure.
In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...
1 kilohertz (kHz) 1 kHz: Usual frequency of a bleep censor: 4.186 kHz: Acoustic – the highest musical note (C 8) playable on a normally-tuned standard piano 8 kHz: ISDN sampling rate 10 4: 10 kHz 14 kHz: Acoustic – the typical upper limit of adult human hearing 17.4 kHz
Acoustic impedance, denoted Z and measured in Pa·m −3 ·s in SI units, is defined by [2] = ^ ^ (), where ^ is the Laplace transform of sound pressure, [citation needed] ^ is the Laplace transform of sound volume flow rate.
For example, while sound travels at 343 m/s in air, it travels at 1481 m/s in water (almost 4.3 times as fast) and at 5120 m/s in iron (almost 15 times as fast). In an exceptionally stiff material such as diamond , sound travels at 12,000 m/s (39,370 ft/s), [ 2 ] – about 35 times its speed in air and about the fastest it can travel under ...
Water is the chemical substance with chemical formula H 2 O; one molecule of water has two hydrogen atoms covalently bonded to a single oxygen atom. [26] Water is a tasteless, odorless liquid at ambient temperature and pressure. Liquid water has weak absorption bands at wavelengths of around 750 nm which cause it to appear to have a blue color. [4]
The form of the Kelvin equation here is not the form in which it appeared in Lord Kelvin's article of 1871. The derivation of the form that appears in this article from Kelvin's original equation was presented by Robert von Helmholtz (son of German physicist Hermann von Helmholtz) in his dissertation of 1885. [2]