Search results
Results from the WOW.Com Content Network
Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.
Information about the actual properties, such as size, of the basic arithmetic types, is provided via macro constants in two headers: <limits.h> header (climits header in C++) defines macros for integer types and <float.h> header (cfloat header in C++) defines macros for floating-point types. The actual values depend on the implementation.
The IEEE 754 standard [9] specifies a binary16 as having the following format: Sign bit: 1 bit; Exponent width: 5 bits; Significand precision: 11 bits (10 explicitly stored) The format is laid out as follows: The format is assumed to have an implicit lead bit with value 1 unless the exponent field is stored with all zeros.
The three fields in a 64bit IEEE 754 float. Floating-point numbers in IEEE 754 format consist of three fields: a sign bit, a biased exponent, and a fraction. The following example illustrates the meaning of each. The decimal number 0.15625 10 represented in binary is 0.00101 2 (that is, 1/8 + 1/32). (Subscripts indicate the number base
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
float and double, floating-point numbers with single and double precisions; boolean, a Boolean type with logical values true and false; returnAddress, a value referring to an executable memory address. This is not accessible from the Java programming language and is usually left out. [13] [14]
The minimum strictly positive (subnormal) value is 2 −16494 ≈ 10 −4965 and has a precision of only one bit. The minimum positive normal value is 2 −16382 ≈ 3.3621 × 10 −4932 and has a precision of 113 bits, i.e. ±2 −16494 as well. The maximum representable value is 2 16384 − 2 16271 ≈ 1.1897 × 10 4932.
The binary format with the same bit-size, binary32, has an approximate range from subnormal-minimum ±1 × 10 ^ −45 over normal-minimum with full 24-bit precision: ±1.175 494 4 × 10 ^ −38 to maximum ±3.402 823 5 × 10 ^ 38.