Search results
Results from the WOW.Com Content Network
Maraging steels offer good weldability, but must be aged afterward to restore the original properties to the heat affected zone. [1] When heat-treated the alloy has very little dimensional change, so it is often machined to its final dimensions. Due to the high alloy content maraging steels have a high hardenability.
Entered service in 1962. The projectile is Maraging steel. [citation needed] Country of origin: Soviet Union; Projectile dimension: 410 mm 10: 1 L/d; Projectile weight (including sabot): 5.67 kg; Projectile weight: 3.6 kg; Muzzle velocity: 1800 m/s; Muzzle energy: 5.8 MJ
RHA is homogeneous because its structure and composition are uniform throughout its thickness. The opposite of homogeneous steel plate is cemented or face-hardened steel plate, where the face of the steel is composed differently from the substrate. The face of the steel, which starts as an RHA plate, is hardened by a heat-treatment process.
[6] 953 is based on a specially developed maraging steel stainless steel alloy that can achieve a tensile strength in excess of 2000 MPa (853 is around 1400 MPa), giving a good strength-to-weight ratio. Because of the high strength of the steel, extremely thin tube walls (down to 0.3 mm) can be used, thus reducing the weight. [7]
Martensitic stainless steels can be high- or low-carbon steels built around the composition of iron, 12% up to 17% chromium, carbon from 0.10% (Type 410) up to 1.2% (Type 440C): [8] The chromium and carbon contents are balanced to have a martensitic structure.
SAE Type 630 stainless steel (more commonly known as 17-4 PH, or simply 17-4; also known as UNS S17400) is a grade of martensitic precipitation hardened stainless steel. It contains approximately 15–17.5% chromium and 3–5% nickel, as well as 3–5% copper. [1] The name comes from the chemical makeup which is approximately 17% chromium and 4 ...
For a eutectoid steel (0.76% C), between 6 and 10% of austenite, called retained austenite, will remain. The percentage of retained austenite increases from insignificant for less than 0.6% C steel, to 13% retained austenite at 0.95% C and 30–47% retained austenite for a 1.4% carbon steel. A very rapid quench is essential to create martensite.
The SAE steel grades system is a standard alloy numbering system (SAE J1086 – Numbering Metals and Alloys) for steel grades maintained by SAE International. In the 1930s and 1940s, the American Iron and Steel Institute (AISI) and SAE were both involved in efforts to standardize such a numbering system for steels.