enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parity-check matrix - Wikipedia

    en.wikipedia.org/wiki/Parity-check_matrix

    Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]

  3. Error correction code - Wikipedia

    en.wikipedia.org/wiki/Error_correction_code

    Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.

  4. Hamming code - Wikipedia

    en.wikipedia.org/wiki/Hamming_code

    For each integer r ≥ 2 there is a code-word with block length n = 2 r − 1 and message length k = 2 r − r − 1. Hence the rate of Hamming codes is R = k / n = 1 − r / (2 r − 1) , which is the highest possible for codes with minimum distance of three (i.e., the minimal number of bit changes needed to go from any code word to any other ...

  5. Multidimensional parity-check code - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_parity...

    A multidimensional parity-check code (MDPC) is a type of error-correcting code that generalizes two-dimensional parity checks to higher dimensions. It was developed as an extension of simple parity check methods used in magnetic recording systems and radiation-hardened memory designs .

  6. Parity measurement - Wikipedia

    en.wikipedia.org/wiki/Parity_measurement

    A qubit is a two-level system, and when we measure one qubit, we can have either 1 or 0 as a result. One corresponds to odd parity, and zero corresponds to even parity. This is what a parity check is. This idea can be generalized beyond single qubits. This can be generalized beyond a single qubit and it is useful in QEC.

  7. Matrix completion - Wikipedia

    en.wikipedia.org/wiki/Matrix_completion

    The high rank matrix completion in general is NP-Hard. However, with certain assumptions, some incomplete high rank matrix or even full rank matrix can be completed. Eriksson, Balzano and Nowak [10] have considered the problem of completing a matrix with the assumption that the columns of the matrix belong to a union of multiple low-rank subspaces.

  8. Pascal matrix - Wikipedia

    en.wikipedia.org/wiki/Pascal_matrix

    In matrix theory and combinatorics, a Pascal matrix is a matrix (possibly infinite) containing the binomial coefficients as its elements. It is thus an encoding of Pascal's triangle in matrix form. There are three natural ways to achieve this: as a lower-triangular matrix , an upper-triangular matrix , or a symmetric matrix .

  9. Hilbert matrix - Wikipedia

    en.wikipedia.org/wiki/Hilbert_matrix

    The Hilbert matrix is also totally positive (meaning that the determinant of every submatrix is positive). The Hilbert matrix is an example of a Hankel matrix. It is also a specific example of a Cauchy matrix. The determinant can be expressed in closed form, as a special case of the Cauchy determinant. The determinant of the n × n Hilbert ...