Search results
Results from the WOW.Com Content Network
Tension is the pulling or stretching force transmitted axially along an object such as a string, rope, chain, rod, truss member, or other object, so as to stretch or pull apart the object. In terms of force, it is the opposite of compression. Tension might also be described as the action-reaction pair of forces acting at each end of an object.
where is the applied tension on the line, is the resulting force exerted at the other side of the capstan, is the coefficient of friction between the rope and capstan materials, and is the total angle swept by all turns of the rope, measured in radians (i.e., with one full turn the angle =).
Huber's equation, first derived by a Polish engineer Tytus Maksymilian Huber, is a basic formula in elastic material tension calculations, an equivalent of the equation of state, but applying to solids. In most simple expression and commonly in use it looks like this: [1]
An alternative to hoop stress in describing circumferential stress is wall stress or wall tension (T), which usually is defined as the total circumferential force exerted along the entire radial thickness: [3]
If the tension on a string is ten lbs., it must be increased to 40 lbs. for a pitch an octave higher. [1] A string, tied at A , is kept in tension by W , a suspended weight, and two bridges, B and the movable bridge C , while D is a freely moving wheel; all allowing one to demonstrate Mersenne's laws regarding tension and length [ 1 ]
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.
If the surface tension of water is known which is 72 dyne/cm, we can calculate the surface tension of the specific fluid from the equation. The more drops we weigh, the more precisely we can calculate the surface tension from the equation. [3] The stalagmometer must be kept clean for meaningful readings.