enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    A diatomic molecular orbital diagram is used to understand the bonding of a diatomic molecule. MO diagrams can be used to deduce magnetic properties of a molecule and how they change with ionization. They also give insight to the bond order of the molecule, how many bonds are shared between the two atoms. [12]

  3. Gold compounds - Wikipedia

    en.wikipedia.org/wiki/Gold_compounds

    Gold compounds are compounds by the element gold (Au). Although gold is the most noble of the noble metals , [ 1 ] [ 2 ] it still forms many diverse compounds. The oxidation state of gold in its compounds ranges from −1 to +5, but Au(I) and Au(III) dominate its chemistry.

  4. List of chemistry mnemonics - Wikipedia

    en.wikipedia.org/wiki/List_of_chemistry_mnemonics

    A mnemonic is a memory aid used to improve long-term memory and make the process of consolidation easier. Many chemistry aspects, rules, names of compounds, sequences of elements, their reactivity, etc., can be easily and efficiently memorized with the help of mnemonics.

  5. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    The qualitative approach of MO analysis uses a molecular orbital diagram to visualize bonding interactions in a molecule. In this type of diagram, the molecular orbitals are represented by horizontal lines; the higher a line the higher the energy of the orbital, and degenerate orbitals are placed on the same level with a space between them.

  6. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    Elements with 7p electrons have been discovered, but their electronic configurations are only predicted – save the exceptional Lr, which fills 7p 1 instead of 6d 1. ‡ For the elements whose highest occupied orbital is a 6d orbital, only some electronic configurations have been confirmed. (Mt, Ds, Rg and Cn are still missing).

  7. HOMO and LUMO - Wikipedia

    en.wikipedia.org/wiki/HOMO_and_LUMO

    Diagram of the HOMO and LUMO of a molecule. Each circle represents an electron in an orbital; when light of a high enough frequency is absorbed by an electron in the HOMO, it jumps to the LUMO. 3D model of the highest occupied molecular orbital in CO 2 3D model of the lowest unoccupied molecular orbital in CO 2

  8. Group 11 element - Wikipedia

    en.wikipedia.org/wiki/Group_11_element

    Group 11, by modern IUPAC numbering, [1] is a group of chemical elements in the periodic table, consisting of copper (Cu), silver (Ag), gold (Au), and roentgenium (Rg), although no chemical experiments have yet been carried out to confirm that roentgenium behaves like the heavier homologue to gold.

  9. Walsh diagram - Wikipedia

    en.wikipedia.org/wiki/Walsh_diagram

    Walsh diagrams in conjunction with molecular orbital theory can also be used as a tool to predict reactivity. By generating a Walsh Diagram and then determining the HOMO/LUMO of that molecule, it can be determined how the molecule is likely to react. In the following example, the Lewis acidity of AH 3 molecules such as BH 3 and CH 3 + is predicted.