Search results
Results from the WOW.Com Content Network
Similarly, when a metal is deposited onto a semiconductor (by thermal evaporation, for example), the wavefunction of an electron in the semiconductor must match that of an electron in the metal at the interface. Since the Fermi levels of the two materials must match at the interface, there exists gap states that decay deeper into the semiconductor.
The common anion rule guesses that, since the valence band is related to anionic states, materials with the same anions should have very small valence band offsets. [citation needed] Tersoff [5] proposed the presence of a dipole layer due to induced gap states, by analogy to the metal-induced gap states in a metal–semiconductor junction.
This model includes a dipole layer at the interface between the two semiconductors which arises from electron tunneling from the conduction band of one material into the gap of the other (analogous to metal-induced gap states). This model agrees well with systems where both materials are closely lattice matched [11] such as GaAs/AlGaAs.
Shown is the graphical definition of the Schottky barrier height, Φ B, for an n-type semiconductor as the difference between the interfacial conduction band edge E C and Fermi level E F. Whether a given metal-semiconductor junction is an ohmic contact or a Schottky barrier depends on the Schottky barrier height, Φ B, of the junction.
The nature of these metal-induced gap states and their occupation by electrons tends to pin the center of the band gap to the Fermi level, an effect known as Fermi level pinning. Thus the heights of the Schottky barriers in metal–semiconductor contacts often show little dependence on the value of the semiconductor or metal work functions, in ...
The band gap is called "direct" if the crystal momentum of electrons and holes is the same in both the conduction band and the valence band; an electron can directly emit a photon. In an "indirect" gap, a photon cannot be emitted because the electron must pass through an intermediate state and transfer momentum to the crystal lattice.
As an example the band bending induced by the forming of a p-n junction or a metal-semiconductor junction can be modified by applying a bias voltage . This voltage adds to the built-in potential ( V B I {\displaystyle V_{BI}} ) that exists in the depletion region ( V B I − V A {\displaystyle V_{BI}-V_{A}} ). [ 6 ]
The closer f is to 1, the higher chance this state is occupied. The closer f is to 0, the higher chance this state is empty. The location of μ within a material's band structure is important in determining the electrical behaviour of the material. In an insulator, μ lies within a large band gap, far away from any states that are able to carry ...