Search results
Results from the WOW.Com Content Network
Hansen solubility parameters were developed by Charles M. Hansen in his Ph.D thesis in 1967 [1] [2] as a way of predicting if one material will dissolve in another and form a solution. [3] They are based on the idea that like dissolves like where one molecule is defined as being 'like' another if it bonds to itself in a similar way.
Solubility parameter may refer to parameters of solubility: Hildebrand solubility parameter, a numerical estimate of the degree of interaction between materials, and can be a good indication of solubility; Hansen solubility parameters, developed by Charles Hansen as a way of predicting if one material will dissolve in another and form a solution
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Gregory's solvent ϸ parameter is a quantum chemically derived charge density parameter. [9] This parameter seems to reproduce many of the experimental solvent parameters (especially the donor and acceptor numbers) using this charge decomposition analysis approach, with an electrostatic basis.
Dimethyl carbonate has solubility profile similar to common glycol ethers, meaning dimethyl carbonate can dissolve most common coating resins except perhaps rubber based resins. Hildebrand solubility parameter is 20.3 MPa and Hansen solubility parameters are: dispersion = 15.5, polar = 3.9, H bonding = 9.7. [ 15 ]
In addition to over 130 published papers and 8 patents (h-index 25), he authored Hansen Solubility Parameters – A User's Handbook in 1999 followed by an expanded 2nd Edition in 2007. [6] With Abbott and Yamamoto he authored the package of software, eBook, and datasets called Hansen Solubility Parameters in Practice, in 2008 which is currently ...
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise. The substances are listed in alphabetical order.
(However, PE only dissolves at temperatures well above 100 °C.) Poly(styrene) has a solubility parameter of 9.1 cal 1/2 cm −3/2, and thus ethyl acetate is likely to be a good solvent. Nylon 6,6 has a solubility parameter of 13.7 cal 1/2 cm −3/2, and ethanol is likely to be the best solvent of those tabulated. However, the latter is polar ...