Search results
Results from the WOW.Com Content Network
A hollow matrix may be a square matrix whose diagonal elements are all equal to zero. [3] That is, an n × n matrix A = (a ij) is hollow if a ij = 0 whenever i = j (i.e. a ii = 0 for all i). The most obvious example is the real skew-symmetric matrix. Other examples are the adjacency matrix of a finite simple graph, and a distance matrix or ...
Signature matrix: A diagonal matrix where the diagonal elements are either +1 or −1. Single-entry matrix: A matrix where a single element is one and the rest of the elements are zero. Skew-Hermitian matrix: A square matrix which is equal to the negative of its conjugate transpose, A * = −A. Skew-symmetric matrix
The adjugate of a diagonal matrix is again diagonal. Where all matrices are square, A matrix is diagonal if and only if it is triangular and normal. A matrix is diagonal if and only if it is both upper-and lower-triangular. A diagonal matrix is symmetric. The identity matrix I n and zero matrix are diagonal. A 1×1 matrix is always diagonal.
The trace of a matrix is the sum of the diagonal elements. The top-right to bottom-left diagonal is sometimes described as the minor diagonal or antidiagonal. The off-diagonal entries are those not on the main diagonal. A diagonal matrix is one whose off-diagonal entries are all zero. [4] [5]
Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.
During this process, we gradually modify the matrix using row operations until it becomes the matrix in which all the elements below the main diagonal are equal to zero. During this, we will simultaneously create two separate matrices P {\displaystyle P} and L {\displaystyle L} , such that P A = L U {\displaystyle PA=LU} .
In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} in k -dimensional space ℝ k , the elements of their Euclidean distance matrix A are given by squares of distances between them.
The phases of the ii and jj elements of D can be chosen so as to make the ii and ji elements of the product matrix D A be real. Then a Givens rotation G can be chosen using the i and j>i rows and columns so as to make the ji element of the product matrix G D A be zero.