Search results
Results from the WOW.Com Content Network
The circular flow of income or circular flow is a model of the economy in which the major exchanges are represented as flows of money, goods and services, etc. between economic agents. The flows of money and goods exchanged in a closed circuit correspond in value, but run in the opposite direction.
Streamlines for the potential flow around a circular cylinder in a uniform flow. The flow pattern is symmetric about a horizontal axis through the centre of the cylinder. At each point above the axis and its corresponding point below the axis, the spacing of streamlines is the same so velocities are also the same at the two points.
The problem of potential compressible flow over circular cylinder was first studied by O. Janzen in 1913 [4] and by Lord Rayleigh in 1916 [5] with small compressibility effects. Here, the small parameter is the square of the Mach number M 2 = U 2 / c 2 ≪ 1 {\displaystyle \mathrm {M} ^{2}=U^{2}/c^{2}\ll 1} , where c is the speed of sound .
The laminar flow through a pipe of uniform (circular) cross-section is known as Hagen–Poiseuille flow. The equations governing the Hagen–Poiseuille flow can be derived directly from the Navier–Stokes momentum equations in 3D cylindrical coordinates ( r , θ , x ) by making the following set of assumptions:
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases.It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of water and other liquids in motion).
Solving applications dealing with non-uniform circular motion involves force analysis. With a uniform circular motion, the only force acting upon an object traveling in a circle is the centripetal force. In a non-uniform circular motion, there are additional forces acting on the object due to a non-zero tangential acceleration.
In fluid dynamics, the lift per unit span (L') acting on a body in a two-dimensional flow field is directly proportional to the circulation, i.e. it can be expressed as the product of the circulation Γ about the body, the fluid density , and the speed of the body relative to the free-stream : ′ =
Consider for instance turbulence generated by the air flow around a tall building: the energy-containing eddies generated by flow separation have sizes of the order of tens of meters. Somewhere downstream, dissipation by viscosity takes place, for the most part, in eddies at the Kolmogorov microscales : of the order of a millimetre for the ...