enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    The abundance of the theorems and identities inherited from Fourier series make the Chebyshev polynomials important tools in numeric analysis; for example they are the most popular general purpose basis functions used in the spectral method, [16] often in favor of trigonometric series due to generally faster convergence for continuous functions ...

  3. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.

  4. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Here we consider operations over polynomials and n denotes their degree; for the coefficients we use a unit-cost model, ignoring the number of bits in a number. In practice this means that we assume them to be machine integers.

  5. Tensor algebra - Wikipedia

    en.wikipedia.org/wiki/Tensor_algebra

    In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...

  6. Invariants of tensors - Wikipedia

    en.wikipedia.org/wiki/Invariants_of_tensors

    These are the coefficients of the characteristic polynomial of the deviator (() /), such that it is traceless. The separation of a tensor into a component that is a multiple of the identity and a traceless component is standard in hydrodynamics, where the former is called isotropic, providing the modified pressure, and the latter is called ...

  7. Multilinear algebra - Wikipedia

    en.wikipedia.org/wiki/Multilinear_algebra

    Multilinear algebra is the study of functions with multiple vector-valued arguments, with the functions being linear maps with respect to each argument. It involves concepts such as matrices, tensors, multivectors, systems of linear equations, higher-dimensional spaces, determinants, inner and outer products, and dual spaces.

  8. Tensor decomposition - Wikipedia

    en.wikipedia.org/wiki/Tensor_decomposition

    A multi-way graph with K perspectives is a collection of K matrices ,..... with dimensions I × J (where I, J are the number of nodes). This collection of matrices is naturally represented as a tensor X of size I × J × K. In order to avoid overloading the term “dimension”, we call an I × J × K tensor a three “mode” tensor, where “modes” are the numbers of indices used to index ...

  9. Complete homogeneous symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Complete_homogeneous...

    Multiplying this by the generating function for the complete homogeneous symmetric polynomials, one obtains the constant series 1 (equivalently, plethystic exponentials satisfy the usual properties of an exponential), and the relation between the elementary and complete homogeneous polynomials follows from comparing coefficients of t m.