enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    A point may be local minimum when it is lower in energy compared to its surrounding only or a global minimum which is the lowest energy point on the entire potential energy surface. Saddle point represents a maximum along only one direction (that of the reaction coordinate) and is a minimum along all other directions. In other words, a saddle ...

  3. Saddle point - Wikipedia

    en.wikipedia.org/wiki/Saddle_point

    A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]

  4. Method of steepest descent - Wikipedia

    en.wikipedia.org/wiki/Method_of_steepest_descent

    In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point (saddle point), in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is ...

  5. Potential energy surface - Wikipedia

    en.wikipedia.org/wiki/Potential_energy_surface

    Stationary points (or points with a zero gradient) have physical meaning: energy minima correspond to physically stable chemical species and saddle points correspond to transition states, the highest energy point on the reaction coordinate (which is the lowest energy pathway connecting a chemical reactant to a chemical product).

  6. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    The x-coordinates of the red circles are stationary points; the blue squares are inflection points. In mathematics, a critical point is the argument of a function where the function derivative is zero (or undefined, as specified below). The value of the function at a critical point is a critical value. [1]

  7. Energy minimization - Wikipedia

    en.wikipedia.org/wiki/Energy_minimization

    A first-order saddle point is a position on the PES corresponding to a minimum in all directions except one; a second-order saddle point is a minimum in all directions except two, and so on. Defined mathematically, an n th order saddle point is characterized by the following: ∂ E /∂ r = 0 and the Hessian matrix, ∂∂ E /∂ r i ∂ r j ...

  8. Stationary point - Wikipedia

    en.wikipedia.org/wiki/Stationary_point

    The stationary points are the red circles. In this graph, they are all relative maxima or relative minima. The blue squares are inflection points.. In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero.

  9. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    More generally, in the context of functions of several real variables, a stationary point that is not a local extremum is called a saddle point. An example of a stationary point of inflection is the point (0, 0) on the graph of y = x 3. The tangent is the x-axis, which cuts the graph at this point. An example of a non-stationary point of ...