Search results
Results from the WOW.Com Content Network
Mesh analysis (or the mesh current method) is a circuit analysis method for planar circuits. Planar circuits are circuits that can be drawn on a plane surface with no wires crossing each other. A more general technique, called loop analysis (with the corresponding network variables called loop currents ) can be applied to any circuit, planar or ...
Mesh analysis: The number of current variables, and hence simultaneous equations to solve, equals the number of meshes. Every current source in a mesh reduces the number of unknowns by one. Mesh analysis can only be used with networks which can be drawn as a planar network, that is, with no crossing components. [3]: 94
In this simple example, the steps (here the spatial step and timestep ) are constant along all the mesh, and the left and right mesh neighbors of the data value at are the values at and +, respectively. Generally in finite differences one can allow very simply for steps variable along the mesh, but all the original nodes should be preserved and ...
The finite volume method (FVM) is a method for representing and evaluating partial differential equations in the form of algebraic equations. [1] In the finite volume method, volume integrals in a partial differential equation that contain a divergence term are converted to surface integrals, using the divergence theorem. These terms are then ...
Sample Coons patch. In mathematics, a Coons patch, is a type of surface patch or manifold parametrization used in computer graphics to smoothly join other surfaces together, and in computational mechanics applications, particularly in finite element method and boundary element method, to mesh problem domains into elements.
On triangular mesh surfaces, the problem of computing this mapping is called mesh parameterization. The parameter domain is the surface that the mesh is mapped onto. Parameterization was mainly used for mapping textures to surfaces. Recently, it has become a powerful tool for many applications in mesh processing.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
One subset of numerical methods are Meshfree methods, which are defined as methods for which "a predefined mesh is not necessary, at least in field variable interpolation". Ideally, a meshfree method does not make use of a mesh "throughout the process of solving the problem governed by partial differential equations, on a given arbitrary domain ...