enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    These are the three main logarithm laws/rules/principles, [3] from which the other properties listed above can be proven. Each of these logarithm properties correspond to their respective exponent law, and their derivations/proofs will hinge on those facts. There are multiple ways to derive/prove each logarithm law – this is just one possible ...

  3. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    In mathematics, the logarithm to base b is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 10 3, the logarithm base of 1000 is 3, or log 10 (1000) = 3.

  4. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.

  5. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Exponentiation with negative exponents is defined by the following identity, which holds for any integer n and nonzero b: =. [1] Raising 0 to a negative exponent is undefined but, in some circumstances, it may be interpreted as infinity (). [22]

  6. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  7. Common logarithm - Wikipedia

    en.wikipedia.org/wiki/Common_logarithm

    An important property of base-10 logarithms, which makes them so useful in calculations, is that the logarithm of numbers greater than 1 that differ by a factor of a power of 10 all have the same fractional part. The fractional part is known as the mantissa. [b] Thus, log tables need only show the fractional part. Tables of common logarithms ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Complex logarithm - Wikipedia

    en.wikipedia.org/wiki/Complex_logarithm

    A single branch of the complex logarithm. The hue of the color is used to show the argument of the complex logarithm. The brightness of the color is used to show the modulus of the complex logarithm. The real part of log(z) is the natural logarithm of | z |. Its graph is thus obtained by rotating the graph of ln(x) around the z-axis.