Search results
Results from the WOW.Com Content Network
Pattern recognition is the task of assigning a class to an observation based on patterns extracted from data. While similar, pattern recognition (PR) is not to be confused with pattern machines (PM) which may possess (PR) capabilities but their primary function is to distinguish and create emergent patterns.
A probabilistic neural network (PNN) [1] is a feedforward neural network, which is widely used in classification and pattern recognition problems. In the PNN algorithm, the parent probability distribution function (PDF) of each class is approximated by a Parzen window and a non-parametric function. Then, using PDF of each class, the class ...
Local binary patterns (LBP) is a type of visual descriptor used for classification in computer vision. LBP is the particular case of the Texture Spectrum model proposed in 1990. LBP is the particular case of the Texture Spectrum model proposed in 1990.
In the classification phase, k is a user-defined constant, and an unlabeled vector (a query or test point) is classified by assigning the label which is most frequent among the k training samples nearest to that query point. Application of a k-NN classifier considering k = 3 neighbors. Left - Given the test point "?", the algorithm seeks the 3 ...
This allows for representing pattern structures, taking into account more complex relationships between attributes than is possible in the case of flat, numerical feature vectors of fixed dimensionality that are used in statistical classification. Syntactic pattern recognition can be used instead of statistical pattern recognition if clear ...
In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a data set. [1] Choosing informative, discriminating, and independent features is crucial to produce effective algorithms for pattern recognition, classification, and regression tasks.
Ciresan, Dan; Meier, Ueli; Schmidhuber, Jürgen (June 2012). "Multi-column deep neural networks for image classification" (PDF). 2012 IEEE Conference on Computer Vision and Pattern Recognition.
Unsupervised classification (also known as clustering) is a method of partitioning remote sensor image data in multispectral feature space and extracting land-cover information. Unsupervised classification require less input information from the analyst compared to supervised classification because clustering does not require training data.