Search results
Results from the WOW.Com Content Network
The Monge cone at a given point (x 0, ..., x n) is the zero locus of the equation in the tangent space at the point. The Monge equation is unrelated to the (second-order) Monge–Ampère equation . References
The most complete results so far have been obtained when the equation is elliptic. Monge–Ampère equations frequently arise in differential geometry, for example, in the Weyl and Minkowski problems in differential geometry of surfaces. They were first studied by Gaspard Monge in 1784 [1] and later by André-Marie Ampère in 1820. [2]
Curvature of general surfaces was first studied by Euler. In 1760 [4] he proved a formula for the curvature of a plane section of a surface and in 1771 [5] he considered surfaces represented in a parametric form. Monge laid down the foundations of their theory in his classical memoir L'application de l'analyse à la géometrie which
In mathematics, the Menger curvature of a triple of points in n-dimensional Euclidean space R n is the reciprocal of the radius of the circle that passes through the three points. It is named after the Austrian - American mathematician Karl Menger .
The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...
The same idea underlies the solution of a first order equation as an integral of the Monge cone. [5] The Monge cone is a cone field in the R n+1 of the (x,u) variables cut out by the envelope of the tangent spaces to the first order PDE at each point. A solution of the PDE is then an envelope of the cone field.
However, Yau's analysis of the complex Monge–Ampère equation in resolving the Calabi conjecture was sufficiently general so as to also resolve the existence of Kähler–Einstein metrics of negative scalar curvature. The third and final case of positive scalar curvature was resolved in the 2010s, in part by making use of the Calabi conjecture.
The scalar curvature is the total trace of the Riemannian curvature tensor, a smooth function on the manifold (,), and in the Kähler case the condition that the scalar curvature is constant admits a transformation into an equation similar to the complex Monge–Ampere equation of the Kähler–Einstein setting.