Search results
Results from the WOW.Com Content Network
In probability theory, Lévy’s continuity theorem, or Lévy's convergence theorem, [1] named after the French mathematician Paul Lévy, connects convergence in distribution of the sequence of random variables with pointwise convergence of their characteristic functions.
The characteristic function approach is particularly useful in analysis of linear combinations of independent random variables: a classical proof of the Central Limit Theorem uses characteristic functions and Lévy's continuity theorem. Another important application is to the theory of the decomposability of random variables.
Continuous stochastic process: the question of continuity of a stochastic process is essentially a question of convergence, and many of the same concepts and relationships used above apply to the continuity question. Asymptotic distribution; Big O in probability notation; Skorokhod's representation theorem; The Tweedie convergence theorem ...
In probability theory and statistics, the Lévy distribution, named after Paul Lévy, is a continuous probability distribution for a non-negative random variable. In spectroscopy, this distribution, with frequency as the dependent variable, is known as a van der Waals profile. [note 1] It is a special case of the inverse-gamma distribution.
In mathematics and statistics, the continuity theorem may refer to one of the following results: the Lévy continuity theorem on random variables;
In probability theory, a Lévy process, named after the French mathematician Paul Lévy, is a stochastic process with independent, stationary increments: it represents the motion of a point whose successive displacements are random, in which displacements in pairwise disjoint time intervals are independent, and displacements in different time intervals of the same length have identical ...
Lévy was born in Paris to a Jewish family which already included several mathematicians. [3] His father Lucien Lévy was an examiner at the École Polytechnique.Lévy attended the École Polytechnique and published his first paper in 1905, at the age of nineteen, while still an undergraduate, in which he introduced the Lévy–Steinitz theorem.
This result is usually called Lévy's zero–one law or Levy's upwards theorem. The reason for the name is that if is an event in , then the theorem says that [] almost surely, i.e., the limit of the probabilities is 0 or 1. In plain language, if we are learning gradually all the information that determines the outcome of an event, then we will ...