enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quotient group - Wikipedia

    en.wikipedia.org/wiki/Quotient_group

    Indeed, if is not closed then the quotient space is not a T1-space (since there is a coset in the quotient which cannot be separated from the identity by an open set), and thus not a Hausdorff space. For a non-normal Lie subgroup ⁠ N {\displaystyle N} ⁠ , the space G / N {\displaystyle G\,/\,N} of left cosets is not a group, but simply a ...

  3. Identity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Identity_(mathematics)

    Visual proof of the Pythagorean identity: for any angle , the point (,) = (⁡, ⁡) lies on the unit circle, which satisfies the equation + =.Thus, ⁡ + ⁡ =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...

  4. Algebra representation - Wikipedia

    en.wikipedia.org/wiki/Algebra_representation

    In abstract algebra, a representation of an associative algebra is a module for that algebra. Here an associative algebra is a (not necessarily unital) ring.If the algebra is not unital, it may be made so in a standard way (see the adjoint functors page); there is no essential difference between modules for the resulting unital ring, in which the identity acts by the identity mapping, and ...

  5. Lie group - Wikipedia

    en.wikipedia.org/wiki/Lie_group

    This Lie algebra is finite-dimensional and it has the same dimension as the manifold G. The Lie algebra of G determines G up to "local isomorphism", where two Lie groups are called locally isomorphic if they look the same near the identity element. Problems about Lie groups are often solved by first solving the corresponding problem for the Lie ...

  6. Algebraic structure - Wikipedia

    en.wikipedia.org/wiki/Algebraic_structure

    These equations induce equivalence classes on the free algebra; the quotient algebra then has the algebraic structure of a group. Some structures do not form varieties, because either: It is necessary that 0 ≠ 1, 0 being the additive identity element and 1 being a multiplicative identity element, but this is a nonidentity;

  7. Quotient (universal algebra) - Wikipedia

    en.wikipedia.org/wiki/Quotient_(universal_algebra)

    In mathematics, a quotient algebra is the result of partitioning the elements of an algebraic structure using a congruence relation. Quotient algebras are also called factor algebras . Here, the congruence relation must be an equivalence relation that is additionally compatible with all the operations of the algebra, in the formal sense ...

  8. Projective linear group - Wikipedia

    en.wikipedia.org/wiki/Projective_linear_group

    The action of L 2 (11) can be seen algebraically as due to an exceptional inclusion L 2 (5) L 2 (11) – there are two conjugacy classes of subgroups of L 2 (11) that are isomorphic to L 2 (5), each with 11 elements: the action of L 2 (11) by conjugation on these is an action on 11 points, and, further, the two conjugacy classes are related by ...

  9. Generating set of a group - Wikipedia

    en.wikipedia.org/wiki/Generating_set_of_a_group

    The 5th roots of unity in the complex plane form a group under multiplication. Each non-identity element generates the group. In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their inverses.