enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dixon's factorization method - Wikipedia

    en.wikipedia.org/wiki/Dixon's_factorization_method

    Dixon's method replaces the condition "is the square of an integer" with the much weaker one "has only small prime factors"; for example, there are 292 squares smaller than 84923; 662 numbers smaller than 84923 whose prime factors are only 2,3,5 or 7; and 4767 whose prime factors are all less than 30.

  3. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    It is also not a multiple of 5 because its last digit is 7. The next odd divisor to be tested is 7. One has 77 = 7 · 11, and thus n = 2 · 3 2 · 7 · 11. This shows that 7 is prime (easy to test directly). Continue with 11, and 7 as a first divisor candidate. As 7 2 > 11, one has finished. Thus 11 is prime, and the prime factorization is

  4. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    The entry 4+2i = −i(1+i) 2 (2+i), for example, could also be written as 4+2i= (1+i) 2 (1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right complex half plane with absolute value of the real part larger than or equal to the absolute value of the imaginary part.

  5. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4) .

  6. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    The theory of finite fields, whose origins can be traced back to the works of Gauss and Galois, has played a part in various branches of mathematics.Due to the applicability of the concept in other topics of mathematics and sciences like computer science there has been a resurgence of interest in finite fields and this is partly due to important applications in coding theory and cryptography.

  7. How to compare invoice factoring companies - AOL

    www.aol.com/finance/compare-invoice-factoring...

    So if you have a $10,000 invoice with a factoring fee of 2 percent, you would owe a $200 factoring fee to the factoring company. Factoring fees can be fixed or tiered. Fixed fees stay the same ...

  8. Continued fraction factorization - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction...

    It is a general-purpose algorithm, meaning that it is suitable for factoring any integer n, not depending on special form or properties. It was described by D. H. Lehmer and R. E. Powers in 1931, [1] and developed as a computer algorithm by Michael A. Morrison and John Brillhart in 1975. [2]

  9. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    where p ∈ Z[X] and c ∈ Z: it suffices to take for c a multiple of all denominators of the coefficients of q (for example their product) and p = cq. The content of q is defined as: = (), and the primitive part of q is that of p. As for the polynomials with integer coefficients, this defines a factorization into a rational number and a ...