Search results
Results from the WOW.Com Content Network
A stochastic program is an optimization problem in which some or all problem parameters are uncertain, but follow known probability distributions. [1] [2] This framework contrasts with deterministic optimization, in which all problem parameters are assumed to be known exactly. The goal of stochastic programming is to find a decision which both ...
Stochastic optimization (SO) are optimization methods that generate and use random variables. For stochastic optimization problems, the objective functions or constraints are random. Stochastic optimization also include methods with random iterates .
A stochastic simulation is a simulation of a system that has variables that can change stochastically (randomly) with individual probabilities. [ 1 ] Realizations of these random variables are generated and inserted into a model of the system.
where y is an n × 1 vector of observable state variables, u is a k × 1 vector of control variables, A t is the time t realization of the stochastic n × n state transition matrix, B t is the time t realization of the stochastic n × k matrix of control multipliers, and Q (n × n) and R (k × k) are known symmetric positive definite cost matrices.
In mathematics, the theory of stochastic processes is an important contribution to probability theory, [29] and continues to be an active topic of research for both theory and applications. [30] [31] [32] The word stochastic is used to describe other terms and objects in mathematics.
Simultaneous perturbation stochastic approximation (SPSA) is an algorithmic method for optimizing systems with multiple unknown parameters. It is a type of stochastic approximation algorithm. As an optimization method, it is appropriately suited to large-scale population models, adaptive modeling, simulation optimization , and atmospheric ...
The filtering problem is the following: given observations Z s for 0 ≤ s ≤ t, what is the best estimate Ŷ t of the true state Y t of the system based on those observations? By "based on those observations" it is meant that Ŷ t is measurable with respect to the σ-algebra G t generated by the observations Z s, 0 ≤ s ≤ t.
The term stochastic process first appeared in English in a 1934 paper by Joseph Doob. [60] For the term and a specific mathematical definition, Doob cited another 1934 paper, where the term stochastischer Prozeß was used in German by Aleksandr Khinchin, [63] [64] though the German term had been used earlier, for example, by Andrei Kolmogorov ...