Search results
Results from the WOW.Com Content Network
Commercial rubidium clocks are less accurate than caesium atomic clocks, which serve as primary frequency standards, so a rubidium clock is usually used as a secondary frequency standard. Commercial rubidium frequency standards operate by disciplining a crystal oscillator to the rubidium hyperfine transition of 6.8 GHz (6 834 682 610.904 Hz).
Rubidium standard clocks are prized for their low cost, small size (commercial standards are as small as 1.7 × 10 5 mm 3) [33] and short-term stability. They are used in many commercial, portable and aerospace applications. Modern rubidium standard tubes last more than ten years, and can cost as little as US$50.
English: "Microchip MAC-SA5X miniaturized rubidium atomic clock produces a stable time and frequency reference that maintains a high degree of synchronization to a reference clock, such as a GNSS-derived signal, despite static g-forces or other factors ... measuring only 2 inch by 2 inch and standing less than an inch"
This page was last edited on 6 December 2024, at 01:21 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
A rubidium fountain atomic clock at the United States Naval Observatory. Rubidium compounds are sometimes used in fireworks to give them a purple color. [48] Rubidium has also been considered for use in a thermoelectric generator using the magnetohydrodynamic principle, whereby hot rubidium ions are passed through a magnetic field. [49]
The Time and Frequency Standards Laboratory is a part of the National Physical Laboratory in New Delhi which maintains and calibrates the Indian Standard Time. Features of the Time and Frequency Standards Lab include: Four caesium and rubidium atomic clocks
A standard clock comprises a frequency standard, a device to count off the cycles of the oscillation emitted by the frequency standard, and a means of displaying or outputting the result. Frequency standards in a network or facility are sometimes administratively designated as primary or secondary .
A crystal oscillator depends for its frequency on its physical dimensions, which vary with fabrication and environmental conditions. A rubidium standard is a secondary standard even though it uses atomic transitions, because it takes the form of a gas cell through which an optical signal is passed. The gas cell has inherent inaccuracies because ...