enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    [8] [9] [verification needed] Cramer's rule can also be numerically unstable even for 2×2 systems. [10] However, Cramer's rule can be implemented with the same complexity as Gaussian elimination, [11] [12] (consistently requires twice as many arithmetic operations and has the same numerical stability when the same permutation matrices are ...

  3. Cramer's theorem (algebraic curves) - Wikipedia

    en.wikipedia.org/wiki/Cramer's_theorem_(algebraic...

    The number of distinct terms (including those with a zero coefficient) in an n-th degree equation in two variables is (n + 1)(n + 2) / 2.This is because the n-th degree terms are ,, …,, numbering n + 1 in total; the (n − 1) degree terms are ,, …,, numbering n in total; and so on through the first degree terms and , numbering 2 in total, and the single zero degree term (the constant).

  4. Cramér–Rao bound - Wikipedia

    en.wikipedia.org/wiki/Cramér–Rao_bound

    The result is named in honor of Harald Cramér and Calyampudi Radhakrishna Rao, [1] [2] [3] but has also been derived independently by Maurice Fréchet, [4] Georges Darmois, [5] and by Alexander Aitken and Harold Silverstone. [6] [7] It is also known as Fréchet-Cramér–Rao

  5. Delta method - Wikipedia

    en.wikipedia.org/wiki/Delta_method

    2.1.1 Proof with an explicit order of approximation. 3 Multivariate delta method. ... Roughly, if there is a sequence of random variables X n satisfying ...

  6. Cramér's V - Wikipedia

    en.wikipedia.org/wiki/Cramér's_V

    In statistics, Cramér's V (sometimes referred to as Cramér's phi and denoted as φ c) is a measure of association between two nominal variables, giving a value between 0 and +1 (inclusive). It is based on Pearson's chi-squared statistic and was published by Harald Cramér in 1946. [1]

  7. Cramér's theorem - Wikipedia

    en.wikipedia.org/wiki/Cramér's_theorem

    Cramér’s decomposition theorem, a statement about the sum of normal distributed random variable; Cramér's theorem (large deviations), a fundamental result in the theory of large deviations; Cramer's theorem (algebraic curves), a result regarding the necessary number of points to determine a curve

  8. Chernoff bound - Wikipedia

    en.wikipedia.org/wiki/Chernoff_bound

    In probability theory, a Chernoff bound is an exponentially decreasing upper bound on the tail of a random variable based on its moment generating function.The minimum of all such exponential bounds forms the Chernoff or Chernoff-Cramér bound, which may decay faster than exponential (e.g. sub-Gaussian).

  9. Cramér's conjecture - Wikipedia

    en.wikipedia.org/wiki/Cramér's_conjecture

    Cramér's conjecture is based on a probabilistic model—essentially a heuristic—in which the probability that a number of size x is prime is 1/log x. This is known as the Cramér random model or Cramér model of the primes. [8] In the Cramér random model,