enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Hermitian_matrix

    The Hermitian Laplacian matrix is a key tool in this context, as it is used to analyze the spectra of mixed graphs. [4] The Hermitian-adjacency matrix of a mixed graph is another important concept, as it is a Hermitian matrix that plays a role in studying the energies of mixed graphs. [5]

  3. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    Other names for the conjugate transpose of a matrix are Hermitian transpose, Hermitian conjugate, adjoint matrix or transjugate. The conjugate transpose of a matrix A {\displaystyle \mathbf {A} } can be denoted by any of these symbols:

  4. List of quantum logic gates - Wikipedia

    en.wikipedia.org/wiki/List_of_quantum_logic_gates

    The following tables list several unitary quantum logic gates, together with their common name, how they are represented, and some of their properties. Controlled or conjugate transpose ( adjoint ) versions of some of these gates may not be listed.

  5. Gell-Mann matrices - Wikipedia

    en.wikipedia.org/wiki/Gell-Mann_matrices

    These matrices are traceless, Hermitian, and obey the extra trace orthonormality relation, so they can generate unitary matrix group elements of SU(3) through exponentiation. [1] These properties were chosen by Gell-Mann because they then naturally generalize the Pauli matrices for SU(2) to SU(3), which formed the basis for Gell-Mann's quark ...

  6. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  7. Rayleigh quotient - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_quotient

    In mathematics, the Rayleigh quotient [1] (/ ˈ r eɪ. l i /) for a given complex Hermitian matrix and nonzero vector is defined as: [2] [3] (,) =. For real matrices and vectors, the condition of being Hermitian reduces to that of being symmetric , and the conjugate transpose x ∗ {\displaystyle x^{*}} to the usual transpose x ...

  8. Hermitian function - Wikipedia

    en.wikipedia.org/wiki/Hermitian_function

    In mathematical analysis, a Hermitian function is a complex function with the property that its complex conjugate is equal to the original function with the variable changed in sign: f ∗ ( x ) = f ( − x ) {\displaystyle f^{*}(x)=f(-x)}

  9. Compact finite difference - Wikipedia

    en.wikipedia.org/wiki/Compact_finite_difference

    A disadvantage is that compact schemes are implicit and require to solve a diagonal matrix system for the evaluation of interpolations or derivatives at all grid points. Due to their excellent stability properties, compact schemes are a popular choice for use in higher-order numerical solvers for the Navier-Stokes Equations .