Search results
Results from the WOW.Com Content Network
Negative numbers: Real numbers that are less than zero. Because zero itself has no sign, neither the positive numbers nor the negative numbers include zero. When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal to zero. Thus a non-negative number is either zero or positive.
MechWarrior: Dark Age (MWDA; later as Age of Destruction or AOD) was a tabletop wargame by WizKids set in the BattleTech universe that uses the Clix system.The game's miniatures are pre-painted models of infantry squads, vehicles, and giant walking war machines known as BattleMechs or more simply "'mechs".
The theory of real closed fields is the theory in which the primitive operations are multiplication and addition; this implies that, in this theory, the only numbers that can be defined are the real algebraic numbers. As proven by Tarski, this theory is decidable; see Tarski–Seidenberg theorem and Quantifier elimination.
Clix (miniatures), a system of miniatures games produced by WizKids CLIX (Unix version) , developed by Intergraph iriver clix , rebrand of the iriver U10, a multimedia player
The set of numbers with two different representations is dense in the reals, [6] but the question of classifying real numbers with unique β-expansions is considerably more subtle than that of integer bases. [7] Another problem is to classify the real numbers whose β-expansions are periodic. Let β > 1, and Q(β) be the smallest field ...
On the other hand, the maximal real subfields Q(cos(2π/2 n)) of the 2-power cyclotomic fields Q(ζ 2 n) (where n is a positive integer) are known to have class number 1 for n≤8, [8] and it is conjectured that they have class number 1 for all n. Weber showed that these fields have odd class number.
For the real quadratic field = (with d square-free), the fundamental unit ε is commonly normalized so that ε > 1 (as a real number). Then it is uniquely characterized as the minimal unit among those that are greater than 1. If Δ denotes the discriminant of K, then the fundamental unit is
In 1936, Alfred Tarski gave an axiomatization of the real numbers and their arithmetic, consisting of only the eight axioms shown below and a mere four primitive notions: [1] the set of reals denoted R, a binary relation over R, denoted by infix <, a binary operation of addition over R, denoted by infix +, and the constant 1.