enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Delocalized electron - Wikipedia

    en.wikipedia.org/wiki/Delocalized_electron

    Delocalized electrons also exist in the structure of solid metals. Metallic structure consists of aligned positive ions ( cations ) in a "sea" of delocalized electrons. This means that the electrons are free to move throughout the structure, and gives rise to properties such as conductivity .

  3. Metallic bonding - Wikipedia

    en.wikipedia.org/wiki/Metallic_bonding

    Such electrons can therefore easily change from one energy state to a slightly different one. Thus, not only do they become delocalized, forming a sea of electrons permeating the structure, but they are also able to migrate through the structure when an external electrical field is applied, leading to electrical conductivity.

  4. Bonding in solids - Wikipedia

    en.wikipedia.org/wiki/Bonding_in_solids

    Metallic solids are held together by a high density of shared, delocalized electrons, resulting in metallic bonding. Classic examples are metals such as copper and aluminum, but some materials are metals in an electronic sense but have negligible metallic bonding in a mechanical or thermodynamic sense (see intermediate forms).

  5. Localized molecular orbitals - Wikipedia

    en.wikipedia.org/wiki/Localized_molecular_orbitals

    Because proper (symmetry-adapted) molecular orbitals are fully delocalized and do not admit a ready correspondence with the "bonds" of the molecule, as visualized by the practicing chemist, the most common approach is to instead consider the interaction between filled and unfilled localized molecular orbitals that correspond to σ bonds, π ...

  6. Chemical bond - Wikipedia

    en.wikipedia.org/wiki/Chemical_bond

    The bond results because the metal atoms become somewhat positively charged due to loss of their electrons while the electrons remain attracted to many atoms, without being part of any given atom. Metallic bonding may be seen as an extreme example of delocalization of electrons over a large system of covalent bonds, in which every atom ...

  7. Network covalent bonding - Wikipedia

    en.wikipedia.org/wiki/Network_covalent_bonding

    Solid-phase electrical conductivity: Variable, [6] depending on the nature of the bonding: network solids in which all electrons are used for sigma bonds (e.g. diamond, quartz) are poor conductors, as there are no delocalized electrons. However, network solids with delocalized pi bonds (e.g. graphite) or dopants can exhibit metal-like conductivity.

  8. Transition metal - Wikipedia

    en.wikipedia.org/wiki/Transition_metal

    In general, transition metals possess a high density and high melting points and boiling points. These properties are due to metallic bonding by delocalized d electrons, leading to cohesion which increases with the number of shared electrons. However the group 12 metals have much lower melting and boiling points since their full d subshells ...

  9. Curie temperature - Wikipedia

    en.wikipedia.org/wiki/Curie_temperature

    This is a function that determines the wave of a single electron or paired electrons inside the material. Having control over the probability of where the electron will be allows the Curie temperature to be altered. For example, the delocalised electrons can be moved onto the same plane by applied strains within the crystal lattice. [48]