Search results
Results from the WOW.Com Content Network
Linguistic prescriptivists usually say that fewer and not less should be used with countable nouns, [2] and that less should be used only with uncountable nouns. This distinction was first tentatively suggested by the grammarian Robert Baker in 1770, [ 3 ] [ 1 ] and it was eventually presented as a rule by many grammarians since then.
The concept of a "mass noun" is a grammatical concept and is not based on the innate nature of the object to which that noun refers. For example, "seven chairs" and "some furniture" could refer to exactly the same objects, with "seven chairs" referring to them as a collection of individual objects but with "some furniture" referring to them as a single undifferentiated unit.
Uncountable (thus, with a singular verb form) enough – Enough is enough. little – Little is known about this period of history. less – Less is known about this period of history. much – Much was discussed at the meeting. more (also countable, plural) – More is better. most (also countable, plural) – Most was rotten.
Count nouns or countable nouns are common nouns that can take a plural, can combine with numerals or counting quantifiers (e.g., one, two, several, every, most), and can take an indefinite article such as a or an (in languages that have such articles). Examples of count nouns are chair, nose, and occasion.
In linguistics, a mass noun, uncountable noun, non-count noun, uncount noun, or just uncountable, is a noun with the syntactic property that any quantity of it is treated as an undifferentiated unit, rather than as something with discrete elements. Uncountable nouns are distinguished from count nouns.
A set is countable if it can be enumerated, that is, if there exists an enumeration of it. Otherwise, it is uncountable. For example, the set of the real numbers is uncountable. A set is finite if it can be enumerated by means of a proper initial segment {1, ..., n} of the natural numbers, in which case, its cardinality is n.
Being countable implies being subcountable. In the appropriate context with Markov's principle , the converse is equivalent to the law of excluded middle , i.e. that for all proposition ϕ {\displaystyle \phi } holds ϕ ∨ ¬ ϕ {\displaystyle \phi \lor \neg \phi } .
Classifiers play a similar role to measure words, except that measure words denote a particular quantity of something (a drop, a cupful, a pint, etc.), rather than the inherent countable units associated with a count noun. Classifiers are used with count nouns; measure words can be used with mass nouns (e.g. "two pints of mud"), and can also be ...