Search results
Results from the WOW.Com Content Network
where r is the radius and d is the diameter of the sphere. Archimedes first derived this formula by showing that the volume inside a sphere is twice the volume between the sphere and the circumscribed cylinder of that sphere (having the height and diameter equal to the diameter of the sphere). [6]
A special type of area density is called column density (also columnar mass density or simply column density), denoted ρ A or σ. It is the mass of substance per unit area integrated along a path; [ 1 ] It is obtained integrating volumetric density ρ {\displaystyle \rho } over a column: [ 2 ] σ = ∫ ρ d s . {\displaystyle \sigma =\int \rho ...
The distance between the centers along the shortest path namely that straight line will therefore be r 1 + r 2 where r 1 is the radius of the first sphere and r 2 is the radius of the second. In close packing all of the spheres share a common radius, r. Therefore, two centers would simply have a distance 2r.
where S n − 1 (r) is an (n − 1)-sphere of radius r (being the surface of an n-ball of radius r) and dA is the area element (equivalently, the (n − 1)-dimensional volume element). The surface area of the sphere satisfies a proportionality equation similar to the one for the volume of a ball: If A n − 1 ( r ) is the surface area of an ( n ...
The formula for the volume of the -ball can be derived from this by integration. Similarly the surface area element of the -sphere of radius , which generalizes the area element of the -sphere, is given by
For example, assuming the Earth is a sphere of radius 6371 km, the surface area of the arctic (north of the Arctic Circle, at latitude 66.56° as of August 2016 [7]) is 2π ⋅ 6371 2 | sin 90° − sin 66.56° | = 21.04 million km 2 (8.12 million sq mi), or 0.5 ⋅ | sin 90° − sin 66.56° | = 4.125% of the total surface area of the Earth.
Thus, the segment volume equals the sum of three volumes: two right circular cylinders one of radius a and the second of radius b (both of height /) and a sphere of radius /. The curved surface area of the spherical zone—which excludes the top and bottom bases—is given by =.
In applied sciences, the equivalent radius (or mean radius) is the radius of a circle or sphere with the same perimeter, area, or volume of a non-circular or non-spherical object. The equivalent diameter (or mean diameter ) ( D {\displaystyle D} ) is twice the equivalent radius.