Search results
Results from the WOW.Com Content Network
The complex numbers with integer part all zeroes in the base i – 1 system. Of particular interest are the quater-imaginary base (base 2i) and the base −1 ± i systems discussed below, both of which can be used to finitely represent the Gaussian integers without sign.
"A base is a natural number B whose powers (B multiplied by itself some number of times) are specially designated within a numerical system." [1]: 38 The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers. [1]
A complex number is an expression of the form a + bi, where a and b are real numbers, and i is an abstract symbol, the so-called imaginary unit, whose meaning will be explained further below. For example, 2 + 3i is a complex number. [3]
x is the argument of the complex number (angle between line to point and x-axis in polar form). The notation is less commonly used in mathematics than Euler's formula , e ix , which offers an even shorter notation for cos x + i sin x , but cis(x) is widely used as a name for this function in software libraries .
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
substitution of symbols or numeric values for certain expressions; change of form of expressions: expanding products and powers, partial and full factorization, rewriting as partial fractions, constraint satisfaction, rewriting trigonometric functions as exponentials, transforming logic expressions, etc. partial and total differentiation
In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely e i x {\displaystyle e^{ix}} and e − i x {\displaystyle e^{-ix}} and then integrated.
The complex logarithm is needed to define exponentiation in which the base is a complex number. Namely, if a {\displaystyle a} and b {\displaystyle b} are complex numbers with a ≠ 0 {\displaystyle a\not =0} , one can use the principal value to define a b = e b Log a {\displaystyle a^{b}=e^{b\operatorname {Log} a}} .