Search results
Results from the WOW.Com Content Network
The spiral is started with an isosceles right triangle, with each leg having unit length.Another right triangle (which is the only automedian right triangle) is formed, with one leg being the hypotenuse of the prior right triangle (with length the square root of 2) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the square root of 3.
The so-called Spiral of Theodorus is composed of contiguous right triangles with hypotenuse lengths equal √2, √3, √4, …, √17; additional triangles cause the diagram to overlap. Philip J. Davis interpolated the vertices of the spiral to get a continuous curve.
approximation of the golden spiral golden spiral = special case of the logarithmic spiral Spiral of Theodorus (also known as Pythagorean spiral) c. 500 BC: contiguous right triangles composed of one leg with unit length and the other leg being the hypotenuse of the prior triangle
The name logarithmic spiral is due to the equation = . Approximations of this are found in nature. Spirals which do not fit into this scheme of the first 5 examples: A Cornu spiral has two asymptotic points. The spiral of Theodorus is a polygon.
The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Greek mathematician Archimedes. The term Archimedean spiral is sometimes used to refer to the more general class of spirals of this type (see below), in contrast to Archimedes' spiral (the specific arithmetic spiral of ...
Theaetetus, like Plato, was a student of the Greek mathematician Theodorus of Cyrene. Cyrene was a prosperous Greek colony on the coast of North Africa, in what is now Libya, on the eastern end of the Gulf of Sidra. Theodorus had explored the theory of incommensurable quantities, and Theaetetus continued those studies with great enthusiasm ...
The representation of the Fermat spiral in polar coordinates (r, φ) is given by the equation = for φ ≥ 0. The parameter is a scaling factor affecting the size of the spiral but not its shape. The two choices of sign give the two branches of the spiral, which meet smoothly at the origin.
A page from Archimedes' On Conoids and Spheroids. On Conoids and Spheroids (Ancient Greek: Περὶ κωνοειδέων καὶ σφαιροειδέων) is a surviving work by the Greek mathematician and engineer Archimedes (c. 287 BC – c. 212 BC).